
1

Beamspace MIMO for Millimeter-Wave
Communications: System Architecture, Modeling,

Analysis, and Measurements
John Brady, Student Member, IEEE, Nader Behdad, Member, IEEE, and Akbar Sayeed, Fellow, IEEE

Abstract—Millimeter-wave wireless systems are emerging as a
promising technology for meeting the exploding capacity require-
ments of wireless communication networks. Besides large band-
widths, small wavelengths at mm-wave lead to a high dimensional
spatial signal space, that can be exploited for significant capacity
gains through high dimensional multiple-input multiple-output
(MIMO) techniques. In conventional MIMO approaches, optimal
performance requires prohibitively high transceiver complexity.
By combining the concept of beamspace MIMO communication
with a hybrid analog-digital transceiver, Continuous Aperture
Phased (CAP) MIMO achieves near-optimal performance with
dramatically lower complexity. This paper presents a framework
for physically-accurate computational modeling and analysis
of CAP-MIMO, and reports measurement results on a DLA-
based prototype for multi-mode line-of-sight communication. The
model, based on a critically sampled system representation, is
used to demonstrate the performance gains of CAP-MIMO over
state-of-the-art designs at mm-wave. For example, a CAP-MIMO
system can achieve a spectral efficiency of 10-20 bits/s/Hz with
a 17-31dB power advantage over state-of-the-art, corresponding
to a data rate of 10-200 Gbps with 1-10GHz system bandwidth.
The model is refined to analyze critical sources of power loss in
an actual multi-mode system. The prototype-based measurement
results closely follow the theoretical predictions, validating CAP-
MIMO theory, and illustrating the utility of the model.

Index Terms—Analog beamforming, Discrete lens array,
Gigabit wireless, High dimensional MIMO, Lens Antennas,
Millimeter-wave communication, MIMO systems, Transceiver
complexity

I. INTRODUCTION

The rapid proliferation of consumer wireless devices is
creating a spectrum crisis at the current wireless frequencies. A
variety of communication and signal processing techniques are
currently being pursued for interference management and effi-
cient use of the available spectrum, including cognitive radio
and multi-antenna technology. Despite these efforts, there is
a growing consensus that meeting the dramatically increasing
data demands of wireless devices and applications will require
transformative new technologies and methodologies. While
they have been under research for several years [1], driven by
advances in enabling technology, millimeter-wave (mm-wave)
wireless systems, operating from 30-300GHz, are emerging as
a promising technology for meeting the exploding bandwidth
requirements by enabling multi-Gbps speeds [2].
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Mm-wave systems offer unique opportunities for enabling
high data rate wireless communication. First, moving to the
mm-wave regime opens up large portions of unused spectrum
that can support orders of magnitude larger bandwidths (10s
of GHz) compared to existing systems. Second, exploiting
the spatial dimension is particularly promising: for a given
antenna size A the small wavelength, �, leads to a dramatic
increase in the dimension of the spatial signal space, n =

4A
�2 .

In addition to creating narrow, high-gain beams, the high-
dimensional spatial signal space can be exploited by multiple-
input multiple-output (MIMO) transceivers for significant im-
provement in spectral efficiency through spatial multiplexing
of simultaneous data streams. Due to the highly directional
nature of propagation, line-of-sight (LoS) propagation plays
an important role at mm-wave. While the spatial multiplexing
advantages of MIMO have traditionally rested on multipath
propagation [3]–[5], mm-wave systems can exploit MIMO
operation even in LoS propagation for both point-to-point
(P2P) and point-to-multipoint (P2MP) network links.

While the dimension of the spatial signal space, n, can
be quite high (103 � 10

5), due to the highly directional
propagation, the actual number of spatial communication
modes, p, is much smaller: p ⌧ n. However, current
state-of-the-art mm-wave systems fail to take full advan-
tage of the spatial dimension. “Dish” systems with con-
tinuous aperture antennas, such as the commercial systems
offered by Siklu (http://www.siklu.com/) and LightPointe
(http://www.lightpointe.com/) for mm-wave wireless backhaul,
exploit narrow, high gain beams, but only support a single data
stream (p = 1). Conventional MIMO systems with widely
spaced discrete antennas (due to complexity considerations)
[6]–[8] support spatial multiplexing (p > 1), but suffer from
reduced gain and compromised security due to grating lobes.
In conventional MIMO designs, full exploitation of the spatial
dimension requires critically (half-wavelength) spaced antenna
arrays, but this approach suffers from a prohibitively high
transceiver complexity on the order of n.

The recently proposed Continuous Aperture Phased MIMO
(CAP-MIMO) transceiver architecture [9], [10] is based on the
concept of beamspace MIMO communication [5] to enable
efficient access to the p communication modes of an n-
dimensional mm-wave link. CAP-MIMO uses a hybrid analog-
digital front-end in which a high-resolution discrete lens array
(DLA) is used for analog spatial beamforming. The DLA-
based front-end enables CAP-MIMO to achieve near-optimal
performance with dramatically lower transceiver complexity,
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on the order of p, compared to the order n complexity of
conventional MIMO. Furthermore, initial theoretical results
show that CAP-MIMO can potentially deliver very compelling
performance gains over the state-of-the-art in terms of power
efficiency, capacity, and operational capability.

This paper builds on the theoretical foundations of CAP-
MIMO in [9], [10], overviewed in Sec. II, to investigate the
modeling, design, and analysis of a physically realizable CAP-
MIMO system. There are three main contributions reported in
this paper. First, we outline a general framework for accurate
computational modeling of the CAP-MIMO system in Sec. III,
including modeling of the DLA, channel, and overall system.
Second, the computational framework is used to analyze the
performance of a CAP-MIMO system in Sec. IV. In Sec. V,
we present promising measurement results based on a DLA-
based prototype system to validate and refine the basic CAP-
MIMO theory and the modeling framework. Sec. VI presents
a discussion of results and concluding remarks.

Notation: Lowercase boldfaced letters (e.g., h) denote
complex-valued column vectors, and uppercase boldfaced
letters denote matrices (e.g, H). Elements of vectors or
matrices are not boldfaced; e.g, h(`) and H(`,m). tr(H)

denotes the trace, det(H) the determinant, HT the transpose,
and HH

= (HT
)

⇤ the complex conjugate transpose of H.
The notation x ⇠ CN (m,⌃) denotes a complex Gaussian
vector x with mean m = E[x] and covariance matrix
⌃ = E[(x�m)(x�m)

H
], where E[·] denotes the statistical

expectation operator. We will use the terms modes and beams
interchangeably.

II. CAP MIMO OVERVIEW

CAP-MIMO theory is based on a finite-dimensional system
representation induced by critical sampling of the antenna
apertures. This provides a complex baseband system model
that serves as the foundation for theoretical, computational,
and experimental design and analysis. Consider a link con-
sisting of a 1D linear transmit antenna of length LT and a
1D linear receive antenna of length LR separated by a link
length of R � LT , LR operating at carrier frequency fc,
with wavelength �. Critical sampling results in signal space
dimensions nT and nR, where

n1D =

2L

�
, (1)

which is proportional to the antenna gain [5], [9]–[11]. Critical
sampling of the transmit and receive apertures allows the
system to be modeled in the aperture domain as

r = Hx+w (2)

where x = [x(1), . . . , x(nT )]
T is the transmitted aperture

domain signal vector, r = [r(1), . . . , r(nR)]
T is the received

aperture domain signal vector, H is the nR ⇥ nT aperture
domain channel matrix representing the propagation channel
coupling the transmitter and receiver antennas, and w is a
nR ⇥ 1 vector representing noise and interference. The model
(2) serves as a direct representation for conventional MIMO
systems with critically spaced discrete antenna arrays, and as
a virtual model for continuous aperture systems, such as CAP-
MIMO, with no loss of information [5], [12].

A. Optimal Beamspace Communication
Modulation of data onto orthogonal basis waveforms is a

fundamental concept in communication theory, and orthogonal
spatial beams form an optimal basis for the spatial dimension
[5], [9], [10]. In particular, the spatial signal space of an
antenna of dimension n can be associated with n orthogonal
beams. The aperture domain system model (2) can be equiv-
alently represented in beamspace as

rb = Hbxb +wb , Hb = UT
b,RHUb,T (3)

where xb = [xb(1), . . . , xb(nT )]
T is the transmitted beam-

space signal vector, rb = [rb(1), . . . , rb(nR)]
T is the received

beamspace signal vector, Hb is the nR ⇥ nT beamspace
channel matrix that represents the coupling between the spatial
beams at the transmitter and receiver, Ub,T is the nT ⇥ nT

transmit beamforming matrix, Ub,R is nR ⇥ nR the receive
beamforming matrix, and wb = UT

b,Rw is the nR ⇥ 1

beamspace noise vector.
The transmitted (aperture) signal vector is related to the

beamspace signal vector as x = Ubxb =

Pn
i=1 u(✓i)xb(i).

Each of the n beamspace signals, xb(i), is mapped onto a
corresponding orthogonal beam represented by a column u(✓i)
of Ub. These n beams cover the entire (one-sided) spatial
horizon, �⇡/2  �  ⇡/2, where � is the spatial angle
relative to broadside. Each u(✓) is an array steering/response
vector, or array factor, that represents an (all-phase) complex
spatial sinusoid whose frequency, �1/2  ✓  1/2, is related
to the physical angle � via

✓ =
d

�
sin(�) =

1

2

sin(�) (4)

where d = �/2 denotes the aperture domain sample spacing.
The n elements of u(✓) are given by

ui(✓) = e�j2⇡✓i, i 2 I(n) = {i�(n�1)/2 : i = 0, · · · , n�1}
(5)

where I(n) is a set of n indices symmetrically arranged
around the origin. For critical sampling, d = �/2, there is
a one-to-one mapping between ✓ 2 [�1/2, 1/2] and � 2
[�⇡/2,⇡/2]. If the spatial frequencies/directions for the n
beams, ✓i, are uniformly spaced with spacing

�✓o =

1

n
=

�

2L
() ��o ⇡ �

L
(6)

then the resulting u(✓i) are orthogonal to each other. We note
that �✓o $ ��o is a measure of the spatial resolution or
beamwidth of an critically spaced n-element array of length
L [9], [13]. Ub is explicitly constructed with orthogonal u(✓i)
column vectors as

Ub = Udft =
1p
n
[u(✓i)]i2I(n) , ✓i = i�✓o =

i

n
(7)

which is the n ⇥ n unitary discrete Fourier transform (DFT)
matrix, UH

dftUdft = UdftU
H
dft = I, and the physical angles

�i corresponding to the ✓i are the orthogonal spatial angles
that cover the entire spatial horizon � 2 [�⇡/2,⇡/2] [9], [10].
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B. Beamspace Channel Modeling
The array steering vector defined in (5) can also be used

to define the channel and gain insight into the nature of the
low-dimensional communications subspace. For a P2P LoS
link, the received aperture domain signal can be related to the
signal at ith transmitter sample point by the nR⇥1 steering
vector uR(✓ch,i), where ✓ch,i is the spatial frequency corre-
sponding to the angle subtended by the ith transmit sample
point. The channel is constructed with the uR(✓ch,i) column
vectors as [9], [10]

Hlos = [uR (✓ch,i)]i2I(n
T

) , ✓ch,i = i
�

4R
. (8)

The spacing between the channel frequencies, �
4R , is much

smaller than the orthogonal spacing, �✓o=
1
n=

�
2L , so the

channel vectors will be correlated and the channel will be
low rank. The channel rank can be approximated by the
number of beams that couple strongly between the trans-
mitter and receiver. This is calculated by considering the
spatial bandwidth of the receive aperture, 2✓max, where
✓max = 0.5 sin (�max) ⇡ L

R

4R [9], [10]. Thus

plos,1D =

2✓max

�✓o
⇡ LR

2R�✓o
⇡ LTLR

R�
(9)

orthogonal beams, with beamwidth �✓o, will couple strongly
from transmit to receive, where plos is a fundamental quan-
tity known as the Fresnel number in optics [14]. In gen-
eral, plos ⌧ nT , nR due the relatively large link length,
R � LT , LR, which limits the angular extent of the receive
aperture. We note that plos,1D is a conservative estimate.
In general p 2 [plos,1D, plos,1D + 1] orthogonal beams will
couple strongly. This will be revisited in Sec. IV.

For 2-D planar apertures with A = Lx ⇥ Ly the channel
matrix is the Kronecker product of 1-D channels consisting of
a transmit antenna of length LT,x or LT,y , a receive antenna
of length LR,x or LR,y , and link length R [9]. This results in

n2D =

4A

�2
= nx ⇥ ny , plos,2D =

ATAR

R2�2
= plos,x ⇥ plos,y.

(10)

In the case of multipath, the channel can be modeled as [5]:

Hmp =

N
pX

i=1

�iuR(✓R,i)u
H
T (✓T,i) (11)

where Np is the number of propagation paths, ✓T,i is the an-
gle of departure, ✓R,i is the angle of arrival, and �i is the
complex gain of the ith path. Here the low dimension of the
communication subspace is less readily apparent. However,
since we expect the propagation paths to be sparse at mm-
wave [2], [15], due to the highly directional nature of propa-
gation and clustered scattering, the propagation paths will only
lie within pmp ⌧ nT , nR orthogonal beams (see the concept
of virtual path partitioning in [5]).

In general, H will be a combination of LoS and multipath
components with p = plos + pmp. However, since LoS prop-
agation plays an important role in mm-wave propagation, for

the remainder of the paper we will focus on LoS links where
H = Hlos, p = plos, and plos > 1.

A beamspace channel matrix (Hb) corresponding to a DLA-
based LoS link with 1D antennas, with nT = nR = 26 and
p = plos = 2, is illustrated in Fig. 1. These link specifications
are derived from the prototype discussed in Sec. III-D. There
are two key observations. First, only a p ⇥ p sub-matrix
˜Hb of the 26 ⇥ 26 matrix Hb is non-zero, reflecting the p
dimensional communication subspace. Second, ˜Hb is nearly
diagonal indicating that the orthogonal Fourier spatial basis
vectors used for beamforming in Ub (and approximated by the
DLA) serve as approximate eigenfunctions of the LoS channel.
We will return to these observations in Sec. IV.
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Fig. 1: Normalized Contour plot (30 levels) of |Hb|2 for a 1D
DLA-based link with nT = nR = 26 and p = 2

C. Performance Gains
The advantages of CAP-MIMO lie in its ability to opti-

mally exploit the spatial dimension at mm-wave, through high
antenna gain proportional to n and spatial multiplexing of
data streams over the p dimensional communication subspace.
Basic CAP-MIMO theory developed in [9], [10] provides
accurate and insightful closed-form capacity approximations
to compare CAP-MIMO with the current state-of-the-art in
LoS mm-wave communication. Consider a P2P LoS link with
identical transmit and receive antennas of dimension n that can
support p ⌧ n communication modes. For a given operating
transmit SNR (ratio of the total transmit signal power to the
received noise variance), denoted by ⇢, the capacity of CAP-
MIMO can be approximated as

CCAP�MIMO ⇡ p log2(1 + ⇢rx) bits/s/Hz (12)

where the leading p term reflects the spatial multiplexing gain,
and ⇢rx = ⇢n2

p2 reflects the receive SNR gain, G =

n2

p2 over the
receive SNR of an isotropic antenna, ⇢. An intuitive interpre-
tation of the receive SNR gain is G = 1

p⇥ n ⇥ n
p reflecting the

equal division of transmit SNR among the p beams, the trans-
mit array gain n, and the receive array gain n

p (approximately
p orthogonal beams are packed into the receive aperture).

The capacity of the current state-of-the-art mm-wave sys-
tems, with the same antenna size and frequency, can be con-
sidered as a special case of (12). Continuous aperture “Dish”
systems possess high antenna gain, but no spatial multiplexing
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gain, so the leading p term is dropped and ⇢n2

p  ⇢rx  ⇢n2.
The lower bound corresponds to plos > 1 and the upper
bound to plos  1. Conventional widely spaced MIMO uses
p discrete antennas, each with gain GMIMO [6]–[9]. This
results in full spatial multiplexing gain but reduced SNR

gain ⇢rx = ⇢G2
MIMO, 1  GMIMO < n

p . The upper bound
on GMIMO reflects the fact that the discrete antennas must
be smaller than 1/pth of the aperture.

Fig. 2 compares the capacity of the three systems
(GMIMO = 25dB) for a LoS link consisting of planar anten-
nas with 40cm⇥ 40cm apertures, operating at fc = 80GHz,
separated by a link length R = 42.67m (e.g., a mm-wave back-
haul link), resulting in p = (plos,1D + 1)

2
= 4 and n = 45369.

As evident, CAP-MIMO can deliver significant capacity/SNR

gains relative to the state-of-the-art. In particular, CAP-MIMO
can achieve a capacity of 10-20 bits/s/Hz with a power
advantage of 17-31dB. This corresponds to a data rate of 10-
200 Gbps with 1-10GHz system bandwidth. Additionally the
capacity of a Dish system using the same aperture size and
link length operating at 3GHz (n = 64 p = 1) is included for
reference. While the capacity of the 3GHz link is exceeded
at 80GHz by both Dish (through higher antenna gain) and
conventional widely spaced MIMO (through spatial multiplex-
ing but with reduced antenna gain), CAP-MIMO is able to
leverage both spatial multiplexing and the full antenna gain to
obtain the most improvement.

Fig. 2: Approximate capacity plots for CAP-MIMO, Dish, and
widely spaced conventional MIMO

D. Transceiver Complexity: Analog vs Digital Beamforming
Fig. 3 shows a conventional MIMO transceiver with a crit-

ically spaced discrete antenna array and digital beamforming
via Udft where each orthogonal beam is associated with a
distinct input to Udft. Alternatively, Fig. 4 shows a CAP-
MIMO transceiver using a continuous DLA antenna for
analog beamforming where each orthogonal beam is associ-
ated with a distinct feed antenna on the DLA focal surface.
Both systems have the same signal space dimension n and
consist of four main functional blocks: i) DSP (digital signal
processor), ii) beam selector, iii) transceiver hardware con-
sisting of analog-to-digital/digital-to-analog (A-D/D-A) con-
verters and transceiver (T/R) modules, and iv) beamformer
(represented by the matrix Udft in conventional MIMO and

Udla ⇡ Udft in CAP-MIMO). We note that in conventional
MIMO, blocks ii) and iv) are part of the overall DSP and
in CAP-MIMO they represent mm-wave analog devices. For
a link with a p dimensional communication subspace, both
transceivers map p digital data streams xd(1) . . . xd(p) onto
the p orthogonal beams that span the communication subspace.

A key observation is that conventional MIMO has an indi-
vidual T/R chain associated with each of its n discrete antenna
elements regardless of p. On the other hand, CAP-MIMO has
a T/R chain associated with each of the p DLA feed antennas
corresponding to the p orthogonal beams that span the low
dimensional communication subspace. This critical, yet subtle
difference leads to a dramatic decrease in the system complex-
ity from the order of n (103 � 10

5
) in conventional MIMO to

the order of p (2� 100) in CAP-MIMO.

Fig. 3: Digital beamforming in a conventional MIMO
transceiver

Fig. 4: DLA-based analog beamforming in a CAP-MIMO
transceiver

Fig. 4 also illustrates the key elements of the DLA. The
DLA is modeled as Udla = PUfa, where P represents the
aperture phase profile, and Ufa represents the propagation
from the focal antennas to the (critically-sampled) DLA aper-
ture elements. The DLA acts like a convex lens and maps the
signals in different directions to different locations on the focal
surface. Conventional DLA designs use arrays of receiving and
transmitting antennas connected with variable-length transmis-
sion line, e.g [16]–[18] or extensions of this concept [19]–
[22], to create the aperture phase profile. The high-resolution,
low-loss DLA used in CAP-MIMO is composed of sub-
wavelength, non-resonant phase shifting elements, or pixels,
that can be distributed on a planar surface, and act as bandpass
filters [23]. The response of each pixel is tuned to achieve
a desired aperture phase profile. The DLA was chosen over
alternative analog beamformers, e.g. Butler matrices [24]–[26],
because of its low loss and relative ease of construction for
antennas with a high dimensional spatial signal space.
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In the following sections, we discuss the computational
modeling of the DLA-based CAP-MIMO architecture, perfor-
mance analysis, and measurements performed on a prototype
system to validate and refine the promising results given by
the basic CAP-MIMO theory.

III. COMPUTATIONAL MODELING

In this section, we build on the idea of critical sampling
to outline a computational modeling framework for a LoS
CAP-MIMO system. Sec. III-A develops a model for the
aperture domain channel based on the physical parameters
of the link. In Sec. III-B, we develop a critically sampled
model for the DLA. In Sec. III-C we combine the channel
and DLA models to develop a beamspace model for the DLA-
based CAP-MIMO system. Finally, in Sec. III-D we present
some illustrative applications of the computational modeling
framework to the prototype system.
A. Aperture Domain Channel Modeling

Consider a LoS link consisting of a rectangular transmitter
antenna with area AT = LT,x ⇥ LT,y and dimension nT =

nT,x⇥nT,y , and a rectangular receiver antenna with area AR =

LR,x ⇥ LR,y and dimension nR = nR,x ⇥ nR,y , separated
by a link length of R. The transmit antenna is oriented in
the x-y plane with its center at the origin, and the receive
antenna is parallel to the transmitter with its center located at a
distance R, as shown in Fig. 5. Let �T = (xT , yT , zT = 0) and
�R = (xR, yR, zR = R) denote the coordinates of points on
the transmitter and receiver apertures, respectively. Modeling

Fig. 5: The LoS link geometry

the aperture points as idealized isotropic antennas and ignoring
path loss, the signal at the receiver aperture location, �R, is
related to the signal at the transmitter aperture location, �T ,
via a pure phase shift, e�j 2⇡

�

D
c

(�
R

,�
T

), where Dc(�R, �T ) =p
(xT � xR)

2
+ (yT � yR)2 +R2 is the distance between the

two points. The elements of the nR ⇥ nT aperture domain
channel matrix H consist of all such pairwise channel phase
shifts corresponding to the �/2-spaced x-y sample points:

H(`,m) = e�j 2⇡
�

D
c

(�
R

(`),�
T

(m)) . (13)

The nT and nR critically sampled transmitter and receiver
coordinates are given by

�T (m) = �T (mx,my) =

✓
mx�

2

,
my�

2

, 0

◆
, (14)

�R(`) = �R(`x, `y) =

✓
`x�

2

,
`y�

2

, R

◆
, (15)

where m = (mx,my) 2 I(nT,x) ⇥ I(nT,y), ` = (`x, `y) 2
I(nR,x)⇥ I(nR,y), and the index set I(n) is defined in (5).
Using the above transmit and receive aperture sample points in
(13) constructs the aperture domain all-phase channel matrix
H that completely characterizes the LoS link. As in (8), each
column of H represents the phase relationship between the sig-
nal at a transmit sample point to all the receive sample points.
However, (13) accounts for the curvature of the phase front
at the receiver unlike the plane wave approximation in (8).
Strictly speaking, (13) does not correspond to the Kronecker
product of two 1D channels. However, as we will discuss in
Sec. IV, it does exhibit a nearly Kronecker structure.
B. DLA Modeling

We now construct a physically accurate model for the DLA
matrix, Udla. We consider a DLA in the transmit mode: Udla

represents the mapping from the focal surface antennas to the
critically sampled points on its aperture. In the receive mode,
the mapping from the aperture to the focal antennas is given
by UT

dla. As in Sec. II, the DLA is modeled as Udla = PUfa,
where P models the aperture phase profile, and Ufa models
the propagation from the focal surface antennas to the aperture.
Based on the CAP-MIMO theory, an ideal DLA affects a
spatial Fourier transform: Udla = Udft. In reality, this
relationship is approximate. Both Ufa and P provide design
degrees of freedom for improving this approximation.

Fig. 6: DLA geometry with feed angles �x and �y

Starting with Ufa, consider a rectangular DLA with aper-
ture size A = Lx ⇥ Ly , dimension n = nx ⇥ ny , and focal
length F , as shown in Fig. 6. The DLA aperture is oriented
in the x-y plane with its center at the origin and with the feed
antennas located on a focal surface at a radial distance F from
the origin. Let �a = (xa, ya, za = 0) and �f = (xf , yf , zf )
denote the coordinates of arbitrary points on the aperture and
the focal surface. Using Fig. 6, for a given F , we parameterize
the focal surface coordinates in terms of the angles �x and �y:

zf =

Fp
tan(�x)2 + tan(�y)2 + 1

xf = zf tan(�x) , yf = zf tan(�y) . (16)

Modeling the aperture and focal surface points as idealized
isotropic antennas, and ignoring path loss, the signal at the
aperture location, �a, is related to the signal at the focal
surface location, �f , via a pure phase shift: e�j 2⇡

�

D
fa

(�
a

,�
f

)
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where Dfa(�a, �f ) =
q
(xf � xa)

2
+ (yf � ya)2 + z2f is the

distance between the aperture and focal surface points. The
elements of the n⇥n matrix Ufa consist of all such pairwise
phase shifts corresponding to the critically spaced aperture and
focal surface points:

Ufa(`,m) =

1p
n
e�j 2⇡

�

D
fa

(�
a

(`),�
f

(m)) (17)

where the 1/
p
n term is used for power normalization. The n

critically sampled aperture coordinates are given by

�a(`) = �a(`x, `y) =

✓
`x�

2

,
`y�

2

, 0

◆
, (18)

where ` = (`x, `y) 2 I(nx) ⇥ I(ny). The critically sampled
focal surface coordinates, �f (m) = �f (mx,my), are deter-
mined by choosing the angles �x(mx) and �y(my) to be the
1D orthogonal spatial angles defined in (6) and (4):

�x(mx) = sin

�1
(2✓x(mx)) , ✓x(mx) =

mx

nx

�y(my) = sin

�1
(2✓y(my)) , ✓y(my) =

my

ny
, (19)

where mx 2 I(nx) and my 2 I(ny). We note that the
focal surface coordinates in (16), parameterized by the angles
in (19), determine the location of the DLA feed antennas.
Combining these coordinates with the aperture coordinates
given by (18) in (17) yields the matrix Ufa. Each column
of Ufa represents the phase relation between a particular
feed signal and all the aperture sample points, and the power
normalization ensures power conservation between the feed
antenna and the DLA aperture.

For a given Ufa, the aperture phase profile matrix P is
designed so that Udla best approximates Udft. This is, in
general, a complex problem and relates to the significant work
on microwave lenses over several decades [16]–[22]. For our
initial prototype, we work with the simplest broadside DLA
design in which a plane wave coming from the broadside
direction is perfectly focused on the broadside feed location or
vice versa. This requires that the phase shift from the broadside
feed location to any point on the DLA aperture is constant.
At an arbitrary aperture location, �a = (xa, ya, za = 0), this
phase shift,  (�a), is given by

 (�a) = �max � �(�a) , �(�a) =
2⇡

�

p
x2
a + y2a + F 2

�max =

2⇡

�

r
L2
x

4

+

L2
y

4

+ F 2. (20)

Assuming that the different sample points or DLA pixels do
not interact, which is the assumption in our DLA design [23],
P is a diagonal matrix. Assuming that the DLA aperture is
lossless, the diagonal elements of P are given by the phase
shift  at the critically spaced aperture sample points:

P (`, `) = e�j (�
a

(`)) , ` = (`x, `y) 2 I(nx)⇥ I(ny) , (21)

where �a(`) is defined in (18).
We have outlined the constructions for Ufa and P in terms

of critically spaced aperture and focal surface samples, which
is the minimum sampling resolution required for accurate

system modeling, consistent with the dimension of the spatial
signal space. While finer (higher resolution) sampling may
be employed for visualization purposes, critically sampling is
sufficient for the system analysis in Sec. IV.
C. Beamspace System Modeling

We are now in a position to model the complete DLA-based
CAP-MIMO system in beamspace. Consider a LoS link of
length R connected by planar antennas of dimensions nT and
nR. Using the aperture domain channel matrix H in (13) the
aperture domain system is described by (2). The beamspace
channel model is given by (3), characterized by the nR ⇥ nT

beamspace channel matrix Hb, where Ub,T and Ub,R denote
the transmit and receive beamforming matrices. For an ideal
CAP-MIMO system, the beamforming matrices are given by
the DFT matrices, defined in (7). For an actual DLA-based
CAP-MIMO system, the beamforming matrices are given by
Udla = PUfa using the constructions in (17) and (21).

As discussed in Sec. II, for a LoS link p = plos ⌧ nT , nR

beams, defined in (10), strongly couple from the transmitter
to the receiver and represent the communication modes of
the link. In a CAP-MIMO system, these modes are accessed
via beams that are in turn accessed via a subset of the
focal surface feed antennas in a DLA-based system. Thus,
in subsequent sections, we explicitly consider such lower
dimensional system representations corresponding to a subset
of nb DLA feed antennas or beams. Let ˜Ub,T and ˜Ub,R

represent the corresponding nT⇥nb and nR⇥nb beamforming
sub-matrices obtained by retaining the columns corresponding
to the selected beams. The corresponding nb ⇥ nb beamspace
channel matrix is given by ˜Hb =

˜UT
b,RH

˜Ub,T . In particular,
for the DLA-based system

˜Hb =
˜UT
dla,RH

˜Udla,T =

˜UT
fa,RP

THP ˜Ufa,T (22)

where ˜Ufa,T (nT ⇥nb) and ˜Ufa,R (nR⇥nb) denote the trans-
mit and receive DLA propagation sub-matrices corresponding
to the selected nb feed antennas.
D. The Prototype System

In this section, we apply the basic CAP-MIMO theory and
the modeling framework to an actual prototype system that we
have built as an initial test platform. The prototype consists
of two 40cm ⇥ 40cm square DLAs, designed for broadside
focusing with a focal length of F = 40cm using the procedure
in [23], separated by a link length of R = 2.67m (8.75 ft),
and operating at fc = 10GHz. While this falls outside of the
mm-wave regime fc 2 [30, 300]GHz, the prototype is intended
to show spatial multiplexing in a LoS link, as predicted by
the CAP-MIMO theory. The results scale to mm-wave where
the smaller wavelengths will result in larger link lengths for
a given A and p (see Sec. II-C). These specifications were
chosen based on the available measurement equipment, and
result in system parameters of n = 676 and plos = 4 (or 1D
parameters of nx = ny = 26 and plos,1D = 2).

To assess how well the broadside DLA design approximates
the ideal DFT operation, we analyze the matrix UH

dftUdla =

UH
dftPUfa. The (`,m)

th entry of UH
dftUdla contains the

inner product between the `th and mth columns of Udft and
Udla, representing the corresponding beams. Physically, the
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Fig. 8: Tracking beam propagation through the system: (a) shows a subsection of the TX focal surface with the activated
feed indicated by the filled red square, (b) shows the resulting aperture domain receive signal radiation intensity pattern, and
(c) shows the RX focal surface radiation intensity pattern with the active feed shown as a filled blue square. In (a) and (c)
broadside is indicated by a black diamond.

Fig. 7: Contour plot of |UH
dftUdla|2 for assessing how well

Udla approximates the ideal Udft

(`,m)

th entry represents the coupling from the (isotropic)
mth DLA feed antenna to an isotropic sensor placed at the
`th orthogonal beam direction in the far-field. For a perfectly
designed DLA, we expect the matrix to be diagonal - the
identity matrix; that is, ideally, the mth feed antenna should
only couple with the corresponding mth orthogonal beam.
Fig. 7 shows a contour plot of |UH

dftUdla|2 for the 1D case
(n1D = 26) consisting of linear antennas. As evident, the
broadside DLA closely approximates the DFT for physical
angles between ±30 degrees (which contains 14 orthogonal
beams) and exhibits some off-diagonal entries beyond that
range. Thus, the broadside DLA design seems quite adequate
for broadside links with plos up to 10. We will revisit this
observation in Sec. V.

Next we use the modeling framework to track the propaga-
tion of one of the plos beams that span the communication sub-
space through the system to gain a qualitative understanding of
CAP-MIMO’s operation. As shown in Fig. 8, the propagation
proceeds as follows: i) Fig. 8a shows a sub-section of the
transmit DLA focal surface with the plos=4 selected feed
locations (corresponding to the orthogonal beams that span
the communication subspace) shown as red squares with the

activated feed filled in, ii) Fig. 8b shows the receive aperture
radiation intensity, given by |Hudla| where udla is the column
of Udla corresponding to the activated feed, iii) Fig. 8c shows
the receive focal surface radiation intensity with the selected
feeds shown as blue squares and the active feed filled in. As
evident the received aperture signal is concentrated in one
quadrant of the aperture and the received beamspace signal
is concentrated on the intended feed with most of its power
concentrated on the selected plos feeds. The signals excited
by the other selected feeds will be rotations of this signal,
demonstrating how CAP-MIMO packs plos = 4 independent
beams into the receiver aperture (see also Fig. 1).

While the above discussion applies to idealized isotropic
antennas, the modeling framework can be extended to account
for the actual feeds used for measurements. Essentially, we
need to modify the columns of Ufa which represent the
relationship between the signal at a particular feed antenna
and the electric field at the critical aperture sample points.
Since the focal length F is sufficiently large compared to the
size of the feed antennas, whose dimensions are on the order
of �, we can use well-known approximations for the far-field
patterns of the chosen feed antennas [13]. The columns of Ufa

can be modified by projecting the electric field of the actual
feed antennas onto the DLA aperture coordinates, accounting
for different feed locations relative to the DLA aperture. The
modified columns of Ufa should be normalized to unit energy.
This will be further discussed in the Appendix.

IV. ANALYTICAL RESULTS

In this section, we use the computational modeling frame-
work to the analyze the performance of CAP-MIMO in a P2P
LoS link. In Sec. IV-A, we discuss the LoS link capacity and
how it is achieved by CAP-MIMO via beamspace commu-
nication. Then in Sec. IV-B, we analyze the capacity of the
prototype DLA-based CAP-MIMO system.
A. Link Capacity and Optimal Beamspace Signaling

The LoS link capacity is governed by the eigenvectors and
eigenvalues of the nR ⇥ nT sampled aperture channel matrix
H. Let no = min(nR, nT ) and �2

c = tr(HHH) = nTnR

denote the channel power. It is well-known [3] that capacity-
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achieving signaling is governed by the singular value decom-
position (SVD) of H, H = Uc⇤

1/2
c VH

c , where Uc (nR⇥no)
is the matrix of eigenvectors of the receive covariance matrix
HHH

= Uc⇤cU
H
c , Vc (nT ⇥ no) is the matrix of eigen-

vectors of the transmit covariance matrix HHH = Vc⇤cV
H
c ,

and ⇤c = diag(�1, · · · ,�n
o

) is the matrix of non-negative
eigenvalues. In the presence of complex additive white Gaus-
sian noise (AWGN), capacity-achieving signaling consists of
independent Gaussian signals over the transmit eigenvectors.
That is, the optimal nT dimensional transmit signal vector
x is complex Gaussian, x ⇠ CN (0,Vc⇤sV

H
c ), with ⇤s =

diag(⇢1, · · · , ⇢n
o

) denoting the matrix of eigenvalues of the
signal covariance matrix, and ⇢ = tr(⇤s) =

Pn
o

i=1 ⇢i denoting
the total transmit SNR (signal to noise ratio), since the noise
variance is taken to be unity without loss of generality. The
link capacity is given by the well-known waterfilling power-
allocation formula [3], [27]

C(⇢) = max

⇢
i

:
P

n

o

i=1 ⇢i⇢
log2[det(I+⇤c⇤s)] bits/s/Hz (23)

= max

⇢
i

:
P

n

o

i=1 ⇢i⇢

n
oX

i=1

log2(1 + �i⇢i) (24)

⇡ max

⇢
i

:
P

p

los

i=1 ⇢
i

⇢

p
losX

i=1

log2(1 + �i⇢i) (25)

⇡ plos log2

✓
1 + ⇢

nTnR

p2los

◆
(26)

where the approximation in (25) is based on the fact that
H has plos dominant non-zero eigenvalues, and the second
approximation, used in (26), is based on the assumption
that non-zero eigenvalues are equal (�i ⇡ nTnR/plos) with
equal power (⇢i = ⇢/plos) allocated to them. In general,
plos is a conservative approximation of the number of non-
zero eigenvalues, and the eigenvalues are not exactly uniform.
At low SNRs, all the power is allocated to the dominant
mode corresponding to the largest eigenvalue and additional
dominant modes are activated as the SNR increases, with
equal power allocated to all the dominant non-zero modes at
sufficiently high SNR.

The CAP-MIMO transceiver architecture is based on a
key observation that the Fourier basis functions serve as
approximate channel eigenfunctions [9], [10] which are in turn
approximated by the DLA; that is,

Uc ⇡ U⇤
b,R ⇡ U⇤

dla,R , Vc ⇡ Ub,T ⇡ Udla,T (27)

and the beamspace channel matrix Hb is an approximation
to the diagonal matrix of channel singular values (⇤1/2

c ),
as illustrated in Fig. 1. Thus, beamspace communication,
affected through DLA-based analog beamforming in CAP-
MIMO, provides near-optimal access to the plos-dimensional
communication subspace of the high-dimensional nR ⇥ nT

channel H. In particular, a plos ⇥ plos sub-matrix of Hb, ˜Hb,
characterizes this low-dimensional communication subspace
that is accessed with transceiver complexity on the order of
p as shown in Fig. 4. This corresponds to the DSP block
modulating each of the p data streams onto a singular vector
of ˜Hb. In subsequent sections, we will evaluate the capacities

of various systems by using the appropriate set of eigenvalues
in (24). We note that capacity achieving signaling requires
knowledge of the channel at both the transmitter and receiver.
Since we expect the deterministic LoS channel to vary slowly,
there will be sufficient time to obtain estimates of the channel
at both the transmitter and receiver.
B. Prototype Capacity Analysis

In this section, we theoretically assess the eigenvalues and
the capacity of the prototype LoS link described in Sec. III-D
(n = 676 and plos = 4), and the ability of CAP-MIMO to
approach capacity with the designed DLA. Fig. 9 shows the 10
largest eigenvalues of HHH and HH

b Hb, and 4 eigenvalues of
˜HH
b
˜Hb, normalized with respect to the maximum eigenvalue

of HHH, to compare the number of modes supported by
the aperture channel, full-dimensional beamspace channel,
and the low-dimensional beamspace channel. All channels
exhibit plos ⇡ 4 dominant modes as theoretically expected.
Furthermore, the distribution of eigenvalues is very similar
to what would be expected from a Kronecker matrix. This
confirms that while the channel model (13) is not strictly
Kronecker, it behaves very similarly to the insightful array
steering vector model (8) used in developing the basic CAP-
MIMO theory. We note that the eigenvalues of Hb are a little
higher than the eigenvalues of H as a consequence of the
broadside DLA design.1

Fig. 9: Theoretical eigenvalues of HHH, HH
b Hb, and ˜HH

b
˜Hb

normalized to the maximum eigenvalue of HHH

Using the theoretical eigenvalues, Fig. 10 compares the
capacity of the plos ⇥ plos CAP-MIMO system with the two
state-of-the-art designs – a single-mode Dish system and the
conventional plos ⇥ plos MIMO system with widely spaced
antennas – tailored to the prototype specifications. The conven-
tional MIMO antennas have a gain of GMIMO = 10dB. The
CAP-MIMO gain between broadside feed locations is used as
a proxy for the Dish gain. The capacity (bits/s/Hz) is plotted as
a function of the transmit SNR - ratio of total transmit power
⇢ to the unit noise variance at the receiver for all systems.
(The absolute SNR values are not critical here - we calibrate
them to their physical values in the next section.) In the
conventional systems, Dish dominates at low SNRs whereas
widely spaced MIMO dominates at high SNRs. CAP-MIMO

1This relative increase in beamspace eigenvalues in the broadside LoS
link is offset by a reduction in beamspace channel power in off-broadside
directions to ensure total power conservation; see Sec. V-B.
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outperforms the state-of-the-art over the entire SNR range,
reflecting the multiplexing gain over Dish and power gain
over conventional MIMO. The results show that at a spectral
efficiency of 10 bits/s/Hz, or a data rate of 10 Gbps with 1GHz
system bandwidth, CAP-MIMO has a 17dB SNR advantage
over the state-of-the-art. Fig. 10 also shows that CAP-MIMO
closely approximates the capacity of the 4-beam ideal DFT
channel. The capacity of a CAP-MIMO system with p = 12

feeds is also shown which more closely approximates the
capacity of the full-dimensional (676x676) aperture domain
channel H. This underscores two important observations. First,
plos, as calculated in (10), is an approximate indicator – larger
number of modes can be exploited with higher transceiver
complexity. Second, by increasing the number of feeds to 12,
CAP-MIMO can approach the full capacity of the LoS link
with a dramatically lower complexity (on the order of 12)
compared to the order n = 676 complexity of a critically-
spaced (676x676) conventional MIMO system.
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Fig. 10: Capacity comparison between CAP-MIMO and sev-
eral alternative systems for the prototype LoS link

V. MEASUREMENT RESULTS

In this section we discuss the measurement results obtained
using the prototype LoS CAP-MIMO system (n = 676,
p = plos = 4) specified in Sec. III-D. The prototype DLAs
were constructed using the procedure outlined in [23]. Each
DLA consists of 8 dielectric layers and 9 (4 inductive and
5 capacitive) metallic layers with 4489 �

5 ⇥ �
5 phase shifting

pixels. The measurement setup consists of two structures that
support the DLAs as shown in Fig. 11. The feed antennas
are held by an arm shown in Fig. 12 and moved to the
appropriate positions to measure the elements of the plos⇥plos
beamspace channel submatrix ˜Hb using a vector network ana-
lyzer (VNA). Two types of DLA feed antennas were used for
measurements: vertically oriented �/2 dipole (DP) antennas,
and open-ended WR-90 waveguide (WG) antennas supporting
a vertically oriented TE10 mode. Sec. V-A discusses the
broadside P2P measurements in which the DLAs are facing
each other. We compare the measurement results with the
theoretical results obtained in Sec. IV to assess the accuracy
of the modeling framework. Sec. V-B discusses preliminary
measurement results to assess the off-broadside performance

of CAP-MIMO relevant to point-to-multipoint (P2MP) links.
Finally, Sec. V-C presents system bandwidth measurements.

Fig. 11: CAP-MIMO prototype measurement setup

Fig. 12: CAP-MIMO measurement structure showing the feed
arm used to perform the measurements.

A. Point-to-Point Measurements
In this section, we discuss P2P measurements taken using

both the DP and WG feeds at 10GHz. Let ˆ

˜Hbm denote the
measured p⇥p beamspace channel submatrix and ˜Hbm denote
its theoretical prediction. We want to relate the p eigenvalues
of ˜Hb to the the corresponding eigenvalues of ˜Hbm. To address
this we consider two key issues: i) calibration of the channel
power/eigenvalues of the sampled model in an idealized loss-
free system to their actual physical values, and ii) analysis of
the dominant sources of power loss in the prototype. Define
the following (transmit) covariance matrices with their corre-
sponding eigenvalue decompositions and powers

⌃ = HHH = U⇤UH , �2
c = tr(⌃)

˜⌃b =
˜HH
b
˜Hb =

˜Ub
˜⇤b

˜UH
b , �̃2

b = tr(

˜⌃b)

˜⌃bm =

˜HH
bm

˜Hbm =

˜Ubm
˜⇤bm

˜UH
bm , �̃2

bm = tr(

˜⌃bm) .

While the losses can vary across modes (orthogonal beams
that serve as approximate channel eigenfunctions), we expect
the variation to be small for the LoS link. Thus we study the
relationship between the average channel eigenvalues:

�ave =
�2
c

p
=

Pn
i=1 �i
p

˜�b,ave =
�̃2
b

p
=

Pp
i=1

˜�b,i
p

˜�bm,ave =
�̃2
bm

p
=

Pp
i=1

˜�bm,i

p
.

To address the first issue, the lossless channel power is cal-
ibrated to �2

c = 3.78 using the analysis in the Appendix. This
value reflects the physically meaningful calibration (rather than
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n2 in the system model) that accounts for free-space path loss.
To address the second issue, we use the following relation-
ships:

˜�bm,ave = LT
˜�b,ave = LPLD,TLD,R

˜�b,ave

= LPLD,TLD,RLS�ave (28)

where LT = LPLD,TLD,R denotes the total power loss in the
system, ˜�b,ave = LS�ave, and the losses have the following
interpretation (per mode):

1) LP represents the fraction of power radiated by the
transmitter that couples to the receiver.

2) LD represents the fraction of power radiated by a DLA
feed that couples to the DLA aperture, and vice versa.

3) LS is the power loss due to limiting our attention to a
p-dimensional subspace in beamspace.

Here, LD,T and LD,R refer to the loss at the trans-
mitter and receiver respectively. In broadside P2P links
LD,T = LD,R = LD. From the analysis in the Appendix, we
get the following values for the different quantities in (28):

�ave = 0.94, LS = 0.58, LP,WG = 0.61, LP,DP = 0.61

LD,WG = 0.22, LD,DP = 0.09

where the subscript WG refers to the WR-90 waveguide feed
and DP refers to the dipole feed. Using the above values,
we obtain the following theoretical predictions for average
beamspace channel eigenvalues

˜�b,ave = �2.64dB ,

˜�bm,ave,WG = �17.72dB , ˜�bm,ave,DP = �26.18dB (29)

which are used for comparison with the measurement results.
Fig. 13 plots the eigenvalues of the measured and theoretical

channels (normalized with respect to each channel’s maximum
eigenvalue). Both the DP and WG channels exhibit p = 4 dom-
inant eigenvalues, as predicted by theory. The un-normalized
average eigenvalues for the two channels are
ˆ

˜�bm,ave,WG = �17.67dB ,
ˆ

˜�bm,ave,DP = �27.77dB (30)

which are quite close to their theoretically predicted values
in (29). We note from Fig. 13 that the DP channel better
approximates the theoretical distribution of eigenvalues, likely
due to the fact that its radiation pattern better approximates the
ideal uniform pattern. On the other hand, from (30) we note
that the WG feeds result in significantly better power coupling
(⇠ 10dB) to the DLA aperture, compared to the DP feeds.

Next we assess the capacity of the measured channels
relative to the theoretical predictions. The channel powers for
the theoretical channels are normalized to the following values:

1) Lossless: �̃2
b = LS�

2
c = 0.58⇥ 3.78 = 2.18

2) WG: �̃2
bm,WG = L2

D,WGLP,WG�̃
2
b = 0.068

3) DP: �̃2
bm,DP = L2

D,DPLP,DP �̃
2
b = 0.010.

Fig. 14 compares the capacity of the measured DP and
WG channels relative to the three theoretical channels given
above. Thus, the SNR values in Fig. 14 more accurately
reflect the operational transmit SNR. The results show an
excellent agreement between the theoretical and measurement
performance of WG and DP channels. The SNR gap relative

Fig. 13: Normalized eigenvalues of ˜Hb, ˆ

˜Hbm,WG, and
ˆ

˜Hbm,DP

to the theoretical lossless performance reflects the power loss
incurred by the two kinds of feeds (about 15dB for WG feeds).
With WG feeds, the prototype system can deliver a spectral
efficiency of 10 bits/s/Hz at an operational SNR ⇡ 32dB,
corresponding to a data rate of 10 Gbps with 1GHz system
bandwidth.

Fig. 14: Capacity versus SNR plots for measured and theo-
retical values of DP and WG channels. The capacity of the
lossless theoretical channel is also included for reference.

B. Point-to-Multi-Point Measurements
A CAP-MIMO transmitter can simultaneously communi-

cate with multiple receivers in a point-to-multipoint (P2MP)
network link by appropriately selecting the location and
number of feed antennas. Thus, assessment of CAP-MIMO’s
performance in off-broadside directions is important. Initial
off-broadside measurements with WG feeds were made by
rotating one of the DLA structures, relative to the broadside
direction, as shown in Fig. 15. Channel measurements were
made at off-broadside angles up to  = 60 degrees at 10

GHz to assess P2MP performance over a 120 degree sector.
These measurements correspond to a set of P2P links with the
transmitter and receiver oriented at different angles.

Fig. 16 plots single-feed off-broadside power measurements
and the corresponding theoretical predictions. The measure-
ments were taken by adjusting the feeds so that they were
both located along the imaginary line connecting the centers
of the DLAs shown in Fig. 15. The results show a fairly good
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Fig. 15: Top view of the setup used for off-broadside mea-
surements relevant to P2MP operation

agreement between the measured and theoretical values. Both
plots are normalized to the value at  = 0. The theoretical
value for each angle is 20 log(|Hb( )|) + 10 log(LD,R( )) +
10 log(LP ( )) where Hb( ) is the scalar beamspace channel
between the feeds shown in Fig. 15. LP ( ) and LD,R( )
are the same as in (28) except that the oblique angle of the
receiver is accounted for as discussed in the Appendix. The
reflection coefficient was also measured at each angle and
varied between approximately �8dB and �10dB. Polarization
purity measurements were taken at  = 0, 30, 60 degrees by
rotating the feed elements so that they would excite/receive
horizontally or vertically polarized waves. At each angle the
power of the cross-polarized component was at least 19.67dB
below the power of the co-polarized component.
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Fig. 16: Single WG feed off-broadside power measurements

Next, 2 ⇥ 2 beamspace channel measurements were per-
formed at  =0, 30, 45, 60 degrees, where the two feed
locations were in the same horizontal position as in the
power measurements but their vertical positions were chosen
to correspond to orthogonal beam directions (separated by
��o). Table I shows the normalized measured and theoretical
eigenvalues of each channel. In addition to showing good
agreement, the results show that even at an angle of 60 degrees,
the channel possesses 2 dominant eigenvalues. Using the un-
normalized eigenvalues, Fig. 17 compares the capacity of the
2 ⇥ 2 channels at different off-broadside angles. While there
is some SNR loss in off-broadside directions, a limitation of
the current broadside DLA design, the results indicate robust
CAP-MIMO P2MP operation over a 120 degree sector.

Eigenvalue 30 degrees 45 degrees 60 degrees
1st Measured/Theoretical 1.00/1.00 1.00/1.00 1.00/1.00
2nd Measured/Theoretical 0.40/0.30 0.28/0.20 0.15/0.11

TABLE I: Normalized measured and theoretical eigenvalues
for the 2⇥ 2 channel at different off-broadside angles

Fig. 17: 2⇥ 2 measured channel capacity plots for  = 0, 30,
45, 60

C. Bandwidth Assessment
To assess the operational bandwidth of the prototype DLA-

based system, bandwidth measurements were made from 8-
12GHz using single WG feeds on each end at different angles:
 = 0, 30, 45, 60 degrees. Fig. 18 plots the measurement
results with the power normalized to the maximum of the
measurements for each angle. Broadside measurements are
also shown for DP feeds. The results clearly indicate that the
prototype system supports a 3dB bandwidth of at least 1 GHz
around fc = 10GHz (10% fractional bandwidth). Since we
do not expect the frequency response to change appreciably
in the neighborhood of these feed locations, the results are a
good indication of the multi-mode system bandwidth for small
values of p in both P2P and P2MP operational modes.

Fig. 18: Prototype frequency response over 8-12GHz for
different angles

VI. CONCLUSIONS

Mm-wave systems offer a multitude of new opportunities
and challenges in the design and analysis of multi-gigabit
wireless communication systems. The advantages of relatively
small apertures capable of simultaneously supporting high
antenna gain and MIMO operation are tempered by the high
transceiver complexity associated with optimal exploitation of
the spatial dimension in conventional MIMO approaches. In
this paper, we have reported promising results on modeling,
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analysis, and prototype-based measurements for the recently
proposed CAP-MIMO transceiver architecture that exploits
the highly directional nature of propagation at mm-wave
frequencies through optimal beamspace communication.

A key feature of CAP-MIMO is the analog beamforming
spatial front-end that enables near-optimal communication
with the lowest transceiver complexity. The computational
analysis and prototype-based measurement results reported
in this paper reinforce the significant power, capacity and
complexity gains of CAP-MIMO over competing state-of-the-
art designs predicted by CAP-MIMO theory. The analysis and
results also illustrate the utility and accuracy of the underlying
computational modeling framework.

The work reported in this paper opens several new avenues
for future research on both a system and implementation
levels. While the focus of this paper has been on LoS P2P
links, the CAP-MIMO architecture is applicable to the whole
range of operating conditions: LoS and multipath propagation,
P2P and P2MP links, static or mobile links, and wideband
operation. While LoS propagation is expected to be the pre-
dominant mode of propagation at mm-wave, relatively sparse
multipath propagation may be encountered and exploited in
indoor [28] and urban [29] environments. The more fruitful
exploitation of the spatial dimension in P2MP and multipath
channels in general comes at the cost of higher transceiver
complexity.

There are several important system implementation-related
issues that warrant further investigation. First, DLA designs
with more uniform performance across a broader range of
angles would be useful for P2MP operation. DLA designs
with smaller form factors are also attractive. The large body
of work on lens design may be helpful in this regard. Second,
the design and analysis of feed antennas is an important issue
from the perspective of power efficiency. Third, a related
question is the impact of mutual coupling between closely
spaced feed antennas, which is not considered in the current
computational analysis or measurements. Prior work on the
effects of mutual coupling on MIMO performance [30]–[33]
could be incorporated into the beamspace modeling framework
proposed in this paper. Construction of multi-feed arms will
enable the measurement of mutual coupling effects with a
multi-port VNA. Investigation of methods for realizing beam
selection in an actual transceiver is also an important problem.

APPENDIX

Power Analysis: Reconciling Theory and Measurements
In this appendix, we extend the theoretical results based on

the sampled computational model to enable comparison with
measurement results. Our focus is on obtaining values for the
two power calibration issues given in Sec. V-A.

To calibrate the lossless channel power, �2
c , we revisit the

Friis transmission formula [34]. Assuming uniform aperture
illumination, the gain of a square antenna with area A is given
by G =

4⇡A
�2 = ⇡n, which is proportional to the spatial sig-

nal space dimension, n. Direct application of the formula to
the LoS link results in the following relationship between the

transmit power PT and the received power PR:

PR

PT
=

GT

4⇡R2
AR =

GTGR�
2

(4⇡R)

2
=

ATAR

(R�)2
= p (31)

which is a clearly incorrect since p = plos > 1. This seem-
ingly incorrect result is primarily due to the fact that multi-
mode communication in LoS propagation requires link lengths
that are within the boundary of the conventional far-field def-
inition: R > 4A

� . Since there are p approximately non-over-
lapping coupling modes (beams), each mode will only illu-
minate an area of approximately AR/p at the receiver (see
Fig. 8b). Even within this area, the amplitude of each mode
will not be uniform. However, if we take the effective receiver
area as AR/p in (31), we get the more reasonable result that
PR/PT=1. The above caveats notwithstanding, this interpreta-
tion actually yields a meaningful extension of Friis formula to
multi-mode transmission. First, it implies that, in an idealized
setting, exactly p modes couple the LoS link with no loss
of power. Second, it suggests a physically meaningful nor-
malization of the channel power from �2

c=nTnR=n2 in our
theoretical sampled model (which reflects the antenna gain
relative to isotropic antennas) to �2

c ⇡ p (in the absence of
any losses).

To determine the value of �ave (or equivalently �2
c ), we

use the above discussion to obtain bounds on �ave and then
use the sampled representation to obtain an estimate. For the
upper bound, we consider the extreme case in which each
of the p modes is uniform over AR/p portion of the receive
aperture and zero everywhere else, with no loss of power.
This results in �̃2

c = p and �ave = 1. For the lower bound,
we assume that the total power is conserved over all modes
and each mode suffers a loss of 1/p: �2

c = 1 and �ave =

1/p. The reality lies somewhere between these two extremes,
and we use the sampled channel matrix H to get a reasonable
estimate for �ave: we keep the p largest eigenvalues of ⌃ and
then normalize them by the largest �i. This yields,

�max = 1 , 1 < �2
c < p , 1/p  �ave  1. (32)

For our theoretical model for the prototype, we get �2
c = 3.78

and �ave = 0.94.
Now we move to calculating the component losses in (28).

The loss LS is calculated using the theoretical model as

LS =

˜�b,ave
�ave

=

�̃2
b

�2
c

=

�̃2
b

�2
b

�2
b

�2
c

= LS1LS2 (33)

where �̃2
b is the channel power of Hb, the first equality is used

for calculating LS , and the second equality decomposes it into
two component losses. Using our theoretical prototype model,
we get LS = 0.58, LS1 = 0.35, and LS2 = 1.64. We note
that LS1 < 1 but LS2 > 1 reflecting the increase in channel
power in beamspace versus aperture space due to broadside
DLA design.

In order to calculate LP , we can construct a nfull ⇥ nT

(nfull ⇥ n) matrix Hfull, using the array steering vectors, rep-
resenting the channel between the critically sampled transmit
aperture and a critically sampled hemisphere (which includes
the receiver aperture) located at a distance R from the center
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of the transmit aperture. Using this, LP for a particular mode
(a particular feed excitation) represented by aperture domain
signal u can be calculated as

LP = LP (u) =
kHapuk2

kHfulluk2
(34)

where Hap is an nR ⇥ nT (n ⇥ n) sub-matrix of Hfull

corresponding to the hemisphere sample points that fall within
the angular extent of receive aperture (nearly identical to the
aperture domain matrix H except for a slight difference in cur-
vature). To determine LP for a particular type of feed antenna,
u is calculated using the modified columns of Ufa discussed
in Sec. III-D. When the receiver is not parallel to the transmit-
ter, Hap still corresponds to those hemisphere sample points
that fall within the angular extent of the receiver aperture,
however it no longer is nearly identical to H.

LD can be calculated similarly to LP by using the radiation
patterns of the chosen feed antenna. Since the focal length of
the designed DLA is sufficiently large compared to the size
of the feed antenna (dipole or waveguide), well-known far-
field radiation patterns [13] can be used. Specifically, LD is
calculated by integrating the radiation intensity pattern over
the angular extent of the DLA aperture (as determined by the
feed location, focal length, and aperture size), and normalizing
it by the integral of the radiation intensity pattern over a full
sphere. This also relates to the discussion of modifying the
columns of Ufa in Sec. III-D. Normalizing each column’s
power to the value of LD corresponding to the feed location
and type, rather than unit power, allows the system model to
directly account for LD.

s.
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