

Lens Array Multi-beam MIMO Testbed for Real-Time mmWave Communication and Sensing

1st ACM Workshop on Millimeter-Wave Networks and Sensing Systems October 16, 2017

Akbar Sayeed, Chris Hall and Kevin (Yifan) Zhu Wireless Communications and Sensing Laboratory Electrical and Computer Engineering University of Wisconsin-Madison http://dune.ece.wisc.edu

Supported by the NSF and the Wisconsin Alumni Research Foundation

Outline

- Introduction
- Beamspace MIMO
- mmWave MIMO Transceiver Architectures
- Lens Array CAP-MIMO Testbed
- Measurement results & testbed functionality

CAP-MIMO Testbed

Exciting Times for mmW Research

- A key component of 5G
 - Multi-Gigabits/s speeds
 - millisecond latency
- Key Gigabit use cases
 - Wireless backhaul
 - Wireless fiber-to-home (last mile)
 - Small cell access
 - Autonomous Vehicles
- New FCC mmW allocations
 - Licensed (3.85 GHz): 28, 37, 39 GHz
 - Unlicensed (7 GHZ): 64-71 GHz

Potential of mmW Wireless

Key Advantages of mmW: large bandwidth & narrow beams

6" x 6" access point (AP) antenna array: 6000 elements @80GHz vs. 9 vs. elements @3GHz

Key Operational Functionality: Multibeam steering & data multiplexing

Key Challenge: Hardware Complexity & Computational Complexity (# T/R chains)

Conceptual and Analytical Framework: Beamspace MIMO

Potential of beamspace multiplexing

Beamspace Multiplexing

Multiplexing data into multiple highly-directional (high-gain) beams

mmW MIMO Testbed

CAP-MIMO Testbed

(AS & NB Allerton '10, APS '11; JB, NB & AS TAPS '13)

28 GHz Multi-beam CAP-MIMO Testbed

6" Lens with 16-feed Array

Indoor hallway

Outdoor link (up to 200 ft)

WISCONSIN

Indoor open atrium (LoS & NLoS)

Features

- Unprecedented 4-beam steering & data mux. Use
- RF BW: 1 GHz, Symbol rate: 370 MS/s
- AP 4 MS bi-directional P2MP link
- FPGA-based backend DSP

Use cases

- Real-time testing of PHY-MAC protocols
- Multi-beam channel measurements
- Scaled-up testbed network (JB, JH, AS, 2016 Globecom wkshop, 5G Emerg. Tech.) 7

CAP-MIMO Access Point (AP) Architecture

Single Antenna Mobile Stations (MSs)

Signaling Frame Structure

- Single user (SU) and multi-user (MU) scenarios
- Frame Sync (FS) block: time aligns the frame
- Local oscillator (LO) offset block: for LO offset estimation
- Channel Estimation (CE) block: for beam-frequency channel est.
- Data (D) block: data symbols (simultaneous from both MSs in MU)

Data and Computation Requirements

- Sampling rate (per ch.): 370 MS/s (16 chs 6 GS/s)
- Communication rate (per ch.): 740 Mb/s
- 4 channel throughput: 3 Gb/s (16 chs 12 Gb/s)
- Raw bit rate (per ADC ch (I+Q) 16 b/samp): 12 Gb/s (16 chs. 192 Gb/s)

- Frame duration: 22 micro seconds
- Raw frame size for each (I+Q) channel: 16 K samples = 256 Kb
- Raw frame size for all 16 channels: 256 K samples = 4 Mb
- Raw frame size for 4 selected channels: 64 K samples = 1 Mb

Measurement Analysis Capabilities

- Beam Power Maps
- Channel Estimates
- Constellation Diagrams

- Power Delay Profiles (PDPs)
- Power Spectral Densities (PSDs)
- Measurement forensics & pruning

Antenna Feed Power Measurements for Each Mobile Station

CAP-MIMO Testbed

Data Forensics Example: Frame Sync Correlation Values

Frame sync: correlate the received signal with a known frame sync pseudo-random signal

 $y[n] = \sum_{k=0}^{N_{sync}-1} r[n+k]s_{sync}[k] \quad \text{sync index} = \arg\max_{n} |y[n]|$

Histogram of frame sync correlation values |y[n]|

- One measurement: 100 frame captures for each antenna feed
- Can prune measurements based on values of a specific metric, e.g.:
 - LO Offset estimate
 - Frame sync correlation value
 - SNR/SINR
- Identify erroneous measurements
- More reliable data analysis, e.g.:
 - channel impulse response
 - PDPs
 - PSDs

Directional Focusing of Lens Array: Outdoor LoS Measurements

150 feet link length

25

3.5

Average Feed Powers

MS broadside

MS 11 feet left of broadside (one beamwidth)

MS 22 feet left of broadside (two beamwidths)

MS 22 feet left of broadside feed array moved

Multiuser (MU) Communication: Indoor Hallway Measurements

Time-domain frame signals (MU)

Raw frequency domain data samples

Temporally Filtered frequency domain data samples

WISCONSIN

Spatially combined & temporally filtered frequency domain data samples

Link length=28 feet, MS separation = 3ft

CAP-MIMO Testbed

15

Conclusion

- CAP-MIMO testbed: lens array architecture for multi-beamforming & mux.
- Fully modular hardware design for reconfiguration and experimentation
- Flexible FPGA design for real-time experimentation and measurements
- MATLAB-based offline processing for data analysis and forensics
- Future Work:
 - FPGA design for real-time experimentation
 - AP 4 MS bi-directional P2MP links
 - Remote access and control of the testbed network
 - Analysis of wide band operating characteristics including beamsquint

MS

MS

CAP-MIMO Testbed

Kevin

Chris

Wireless Communication and Sensing Lab

http://dune.ece.wisc.edu/