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Abstract—Wideband high-dimensional antenna arrays are ex-
pected to play a key role in future 5G wireless systems. Due
to narrow beamwidths, phased array/beamforming methods are
the natural choice for design and analysis of high-dimensional
MIMO systems. However, conventional methods are based on
the narrowband assumption which is violated as the bandwidth
and array dimension increase. In this paper we revisit the use
of high-dimensional arrays in line-of-sight single-inputmultiple-
output (SIMO) systems. We develop a channel model that reveals
coupling between the spatial and temporal dimensions that is
not captured by conventional separable models. We then apply
beamspace MIMO (B-MIMO) theory - system representation
with respect to orthogonal spatial beams - to analyze system
performance. Our analysis reveals a key dispersion factor∆ch

that captures the impact of array dimension and bandwidth on
performance. We show that ∆ch characterizes the magnitude
of the coupled signal dispersion in spatial angle and time. This
leads to new B-SIMO transceivers that use on the order of∆ch

beams to deliver near-optimal performance with dramatically low
complexity compared to the optimal receiver. We present results
that demonstrate the significant losses incurred by phased array
receivers, and the near-optimal performance of low-complexity
B-SIMO transceivers. Extension of the new wideband LoS SIMO
model to MISO, MIMO, and multipath scenarios is outlined.

Index Terms—beamforming, millimeter-wave, high-
dimensional MIMO, massive MIMO, wideband MIMO

I. I NTRODUCTION
Capacity demands on wireless networks are rapidly increas-

ing with the proliferation of data intensive wireless devices.
Wideband, high-dimensional antenna arrays are expected to
be a key technology for enabling high data rates and network
functionality in 5G. In particular, millimeter-wave (mm-wave)
systems operating from 30-300 GHz are a natural setting
for wideband high-dimensional multiple-input multiple-output
(MIMO) operation through orders-of-magnitude larger band-
widths and small wavelengths. The large number of MIMO
degrees of freedom can be exploited for a number of critical
capabilities, including [1]–[4]: higher antenna/beamforming
gain; higher spatial multiplexing gain; and highly directional
communication with narrow beams.

Due to narrow beamwidths, wireless channels induced via
high-dimensional arrays are dominated by line-of-sight (LoS)
and sparse multipath propagation. This motivates the use of
phased array/beamforming models for system analysis [1],
[2], [5]–[9] and analog beamforming transceiver architectures
based on phased arrays [8] and lens arrays [1], [5] . However
these models are based on a narrowband assumption, which
is violated as the bandwidth and array dimension increase.
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This leads to beam squint [10], i.e. beams changing direction
with frequency. While current systems using relatively small
arrays and sub-bands of the available bandwidth can use beam-
forming designed for each sub-band to mitigate this problem
[11], this solution does not scale. Traditionally, true time
delay beamforming [12], [13] that replicates this frequency
dependent beam angle has been used to solve this problem.
However, the high dimension of mm-wave arrays makes digital
implementation impractical and presents significant challenges
to scaling up the dimension of analog true time delay beam-
formers (e.g. [14], [15]).

In this paper we consider wideband LoS single-input
multiple-output (SIMO) communication induced by a uniform
linear array (ULA) of antennas at the receiver. We develop a
channel model that reveals the coupling between the spatial
and temporal dimensions that is not captured by separable
narrowband models. We then apply the concept of beamspace
MIMO (B-MIMO) – system representation with respect to
orthogonal spatial beams – to analyze system performance and
develop new transceiver architectures. This analysis reveals a
key channel dispersion parameter∆ch that quantifies the im-
pact of the array dimension and bandwidth on the magnitude of
the dispersion in space and time. Additionally∆ch represents
the number of orthogonal beams needed to capture the effect
of beam squint over the bandwidth of interest. This leads
to new B-SIMO receiver architectures that sample a small
number of orthogonal beams on the order of∆ch to deliver
near optimal performance with dramatically reduced complex-
ity compared to the optimum receiver that we characterize
(and show to correspond to true time delay beamforming).
Analytical and numerical performance results are presented
that demonstrate the significant losses incurred by phased
array based receivers even at relatively narrow bandwidths,
and the flexibility of the low-complexity B-SIMO receiver
to optimize the performance-complexity tradeoff inherentto
high-dimensional systems. Finally, we outline the extension
of the wideband LoS SIMO model to MISO, SIMO and
multipath scenarios.Notation: x is a vector;X is a matrix;
x(t) is a vector valued function of time with Fourier transform
X(f) = F{x(t)} =

∫

x(t)e−j2πftdt.

II. SIMO L INE-OF-SIGHT SYSTEM

Consider SIMO communication between a single antenna
transmitter and anM -dimensional ULA receiver operating at
a carrier frequencyfc. The two-sided signal bandwidth isW =
αfc , α ∈ (0, 2], whereα is the fractional bandwidth; typically
α≪ 1. The transmitter sends a signals(t) of durationT that
belongs to a signal space of dimensionN ≈ TW .



A. Antenna Domain and Beamspace Representations
As we show is Sec. II-B, in contrast with separable phased

array based models, theM -dimensional complex baseband
signal received at the antenna arrayr(t) is related tos(t) via

r(t) = (h ⋆ s) (t) + w(t) ; R(f) = H(f)S(f) +W (f) (1)

whereh(τ) is theM × 1 spatial channel impulse response,
H(f) = F{h(τ)} is thespatial frequency response, andw(t)
is a spatially and temporally white complex additive white
Gaussian noise with power spectral densityNo.

The beamspace channel representations in time and fre-
quency are obtained by projecting the signal onto a set of
orthonormal array steering vectors (beams) at the receiver[1],
[16]. The steering vectoraM (θ) is defined as

aM (θ) =
[

e−j2πkθ
]

k∈I(M)
(2)

where I(M) =
{

ℓ− M−1
2 : ℓ = 0, . . . ,M − 1

}

is a sym-
metric set of indices centered around 0. The columns of the
beamforming matrix,UM , are steering vectors corresponding
to M fixed spatial angles with uniform spacing∆θ = 1

M

UM =
1√
M

[aM (i∆θ)]i∈I(M) (3)

that representM orthogonal beams forming a basis for theM -
dimensional spatial signal space. In fact,UM is a unitary dis-
crete Fourier transform (DFT) matrixUH

MUM = UMU
H
M =

IM . The beamspace system models in time and frequency are

rb(t) = U
H
Mr(t) = (hb ⋆ s) (t) + wb(t) (4)

Rb(f) = U
H
MR(f) = Hb(f)S(f) +W b(f) (5)

where the beamspace channel impulse response and the
beamspace channel frequency response are given by

hb(τ) = U
H
Mh(τ) , Hb(f) = U

H
MH(f) . (6)

B. Wideband Line-of-Sight SIMO Channel Model
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Fig. 1: (a) LoS SIMO System. (b) Far-field beam patterns induced by a fixed steering
vector at three frequencies.

We consider a channel induced by LoS propagation between
a point source located in the far field at an angle ofφo ∈
[−π/2, π/2] and anM -dimensional ULA as shown in Fig. 1.
We consider half-wavelength spacing atfc: d = λc/2. The
signal arrives at each array element with a slightly different
delay. Assuming without loss of generality that the delay is0
at the array center, the delay at thekth element is

τk = kδτ , k ∈ I(M) ; δτ =
d

c
sin(φo) , d = λc/2 (7)

where δτ is the delay between adjacent elements. Down
mixing the signal fromfc, also manifests the delay as a phase
shift between array elements,2πθk = 2πkθo, determined by
the normalized spatial (beam) angle at the carrier frequency:

θo = δτfc =
d

λc
sin(φo) . (8)

In narrowband systems the effects of the delay ons(t) can be
ignored resulting in the baseband phased array model:

r(t) = aM (θo)s(t) + w(t) ; h(τ) = aM (θo)δ(τ) . (9)

As the array dimension and bandwidth increase this is not true
and the baseband channel spatial impulse response is

h(τ)=[hk(τ)]k ;hk(τ)=e
−j2πkθoW sinc(W (τ − kδτ)) (10)

where k ∈ I(M) and bandlimitation leads to thesinc(·)
function. Thekth element of the spatial frequency response is

Hk(f) = F{hk(τ)} = e−j2πk(δτf+θo) , (11)

and from (2), (8), and (11) the channel’s spatial frequency
response in the general case is

H(f) = aM (θ(f)) , −W/2 ≤ f ≤W/2 (12)

with frequency dependent spatial angle

θ(f) = θo

(

f

fc
+ 1

)

, −W/2 ≤ f ≤W/2. (13)

Thus, a point source in a fixed directionφo will induce differ-
ent beam anglesθ(f) at different frequencies. Conversely, a
fixed beam steering vector, likeaM (θo) in (9) in a traditional
phased array and calibrated toφo ↔ θo at f = fc via (8),
will focus power in different physical directions at different
frequencies defined byθ(f) in (13) and obtained by inverting
(8) at a givenf : φ(f) = sin−1(θ(f) ∗ 2λ/λc). Fig. 1(b)
illustrates this beam squinting by plotting the far-field beam-
pattern |aM (θo)

H
aM (θ(f))|2, induced by a fixed steering

vector aimed atφo = 55◦ ↔ θo = 0.41, at three different
frequencies:fc, (1± 0.05)fc.

The beamspace channel impulse response is

hb(τ) = U
H
Mh(τ) = [hb,i(τ)]i∈I(M) (14)

hb,i(τ) =
1√
M

∑

k∈I(M)

e−j2πk(θo−i∆θ)W sinc (W (τ − kδτ)) ,

and the beamspace channel frequency response is

Hb(f) = U
H
MH(f) = [Hb,i(f)]i∈I(M) (15)

Hb,i(f) =
1√
M

a
H
M (i∆θ)H(f) =

1√
M
DM (θ(f)− i∆θ) .

HereDM (θ) = sin(πMθ)
sin(πθ) is the Dirichlet sinc function with

DM (0) =M andDM (m∆θ) = 0 for integersm 6= 0.

C. Channel Dispersion Factor
While the phased array model (9) shows no dispersion in

spatial angle or time, (10) and (12) show dispersion in time
across the aperture and dispersion in spatial angle across the
bandwidth. Thus a point source in narrowband systems spreads
across spatial angle and time in wideband, high dimensional
systems. As we show, if this dispersion is not accounted for it
leads to severe power loss and pulse distortion. The magnitude
of this dispersion is determined by how many resolvable beams
and delays the LoS channel occupies [17]. The angular spread
of the channel over the bandwidth is

∆θch = |θ (W/2)− θ (−W/2)| = α|θo| . (16)

Dividing this by the orthogonal beam spacing∆θ = 1
M yields

∆θch/∆θ =Mα|θo| , (17)



the number of orthogonal beams spanned by the spatial
dispersion. Similarly, the delay spread across the aperture is

∆τch =M |δτ | , (18)

which divided by delay resolution∆τ = 1
W yields

∆τch/∆τ =W∆τch =Mα|θo| , (19)

the number of resolvable delays spanned by the delay disper-
sion. Thus, thischannel dispersion factor

∆ch =Mα|θo| = ∆τch/∆τ = ∆θch/∆θ (20)

characterizes the spreading of a LoS path in both angle and
delay. For transmitters located atφo = 0 ↔ θo = 0, ∆ch = 0
and no dispersion occurs. However for anyφo 6= 0 ↔ θo 6= 0,
there is dispersion, and its magnitude increases as the band-
width and array dimension increase.

III. R ECEIVER ARCHITECTURES FORLOS SIMO SYSTEMS

Consider a transmitted signal of the form [17]:

s(t) =

N−1
∑

ℓ=0

sℓψℓ(t) ; S(f) =

N−1
∑

ℓ=0

sℓΨℓ(f) (21)

where the{sℓ}N−1
ℓ=0 are the independent information symbols

with energyE[|sℓ|2] = Es and the {ψℓ(t)}N−1
ℓ=0 form an

orthonormal basis for theN ≈ TW dimensional signal space.
The sufficient statistics{zℓ}N−1

ℓ=0 for detecting the information
symbols{sℓ} are obtained by taking the inner product of the
received signal with waveforms{g

ℓ
(t)}N−1

ℓ=0 representing a

mapping of{ψℓ(t)}N−1
ℓ=0 into the spatio-temporal receive signal

space. The inner product is
〈

x, y
〉

=

∫

yH(t)x(t)dt =

∫

Y H(f)X(f)df (22)

with the associated norm‖x‖2 = 〈x, x〉. This inner product
may be calculated in either the spatial domain or beamspace,
and in time or frequency. Thus thezℓ are given by

zℓ = 〈r, g
ℓ
〉 =

N−1
∑

ℓ′=0

sℓ′〈(h ∗ ψℓ′), gℓ〉+ 〈w, g
ℓ
〉 (23)

= sℓAℓ +
∑

ℓ′ 6=ℓ

sℓ′Bℓ,ℓ′ +Wℓ .

where the signal amplitude and interference are

Aℓ = 〈(h ∗ ψℓ), gℓ〉 , Bℓ,ℓ′ = 〈(h ∗ ψℓ′), gℓ〉 (24)

andWℓ ∼ CN (0, No‖gℓ‖
2) represents the noise. For a given

choice of basis functions{ψℓ(t)} the signal to interference
and noise (SINR) for the ℓth test statistic (zℓ) is

SINRℓ =

Es

No
|Aℓ|2

Es

No

∑

ℓ′ 6=ℓ |Bℓ,ℓ′ |2 + ‖g
ℓ
‖2 (25)

In the limit of low SNR Es

No
→ 0) and highSNR ( Es

No
→ ∞),

SINRℓ →
Es

No

|Aℓ|2
‖g

ℓ
‖2 , SINRℓ →

|Aℓ|2
∑

ℓ′ 6=ℓ |Bℓ,ℓ′ |2
. (26)

A. Optimal Matched Filter Receiver
The natural choice forg

ℓ
(t) is the matched filter

g
ℓ
(t) =

1√
M

(h ∗ ψℓ)(t);Gℓ(f) =
1√
M
H(f)Ψℓ(f) (27)

with norm ‖g
ℓ
‖2 = 1. This results in signal amplitude

Aℓ=
1√
M

∫ W
2

−W
2

Ψ∗
ℓ (f)a

H
M (θ(f))aM (θ(f))Ψℓ(f)df=

√
M (28)

and interference

Bℓ,ℓ′ =
1√
M

∫ W
2

−W
2

Ψ∗
ℓ (f)a

H
M (θ(f))aM (θ(f))Ψℓ′(f)df =0. (29)

Thus the matched filter introduces no interference regardless
of the choice of basis functions and theSINR is the signal-
to-noise ratio (SNR) and is the same for allzℓ:

SINRℓ = SNRℓ =M
Es
No

. (30)

Plugging (27) into (23) yields

zℓ=

∫

gH
ℓ
(t)r(t)dt =

∫

ψ∗
ℓ (τ)

[
∫

hH(t− τ)r(t)dt

]

dτ (31)

So the optimal receiver can be interpreted as a bank ofM
adjustable delay filters and phase shifters defined byhk(τ)
followed by spatial combining, and then correlation with the
basis functions as shown in Fig. 2(a). Note that this space-time
processing corresponds to true time delay beamforming [12].
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Fig. 2: (a) Optimal matched-filter receiver. (b) Phased-array receiver.

B. Phased Array Receiver
For the phased array receiverg

ℓ
(t) is given by

g
ℓ
(t) =

1√
M

aM (θo)ψℓ(t) (32)

with norm ‖g
ℓ
‖2 = 1 which corrects for the phase shift

across the antenna elements in (10) but does not perform any
temporal equalization to account for the delays. This results
in the following signal amplitude and interference terms

Aℓ =
1√
M

∫ W
2

−W
2

Ψ∗
ℓ (f)a

H
M (θo)aM (θ(f))Ψℓ(f)df

=
1√
M

∫ W
2

−W
2

|Ψℓ(f)|2DM

(

θo
f

fc

)

df (33)

Bℓ,ℓ′ =
1√
M

∫ W
2

−W
2

Ψ∗
ℓ (f)DM

(

θo
f

fc

)

Ψℓ′(f)df . (34)

In contrast with the matched filter, theSINR of the phased
array receiver depends on∆ch and the choice of basis
functions. As shown in Fig. 4(c) in Sec. IV-A, as∆ch

increases,DM (θo
f
fc) varies significantly over the bandwidth;

this results in power loss from (33) and interference between
basis functions from (34).

The phased array receiver is shown in Fig. 2(b) and cor-



responds to removing the filter bank used for space-time
equalization in the optimal receiver in Fig. 2(a). In the special
case whenθo = io∆θ, the phased-array is a special case of
the beamspace receiver in which only theitho beam is used.
C. Low-Complexity Near Optimal Beamspace Receiver

The optimal matched filter receiver (27) in beamspace is

g
b,ℓ
(t)=

1√
M

(hb ∗ψℓ)(t);Gb,ℓ(f)=
1√
M
Hb(f)Ψℓ(f) (35)

with norm 1, which operates onrb(t) = U
H
Mr(t) and performs

space-time equalization over allM beams. The signal and
interference terms are identical to the optimum receiver

Aℓ=
1√
M

∫ W
2

−W
2

|Ψℓ(f)|2HH
b (f)Hb(f)df =M (36)

Bℓ,ℓ′ =
1√
M

∫ W
2

−W
2

Ψ∗
ℓ (f)H

H
b (f)Hb(f)Ψℓ′(f)df = 0, (37)

which follow from the following equivalent relations for the
aggregate channel power spectral density (PSD):

‖H(f)‖2 = HH(f)H(f) =
∑

k∈I(M)

|Hk(f)|2 =M

‖Hb(f)‖2 = HH
b (f)Hb(f) =

∑

i∈I(M)

|Hb,i(f)|2 =M (38)

where |Hk(f)|2 = 1 is the PSD for thek-th antenna, and
Sb,i(f) = |Hb,i(f)|2 = 1

MD2
M (θ(f) − i∆θ) is the PSD for

the ith beam. The above relation states thataggregate PSD is
flat in both the antenna domain and the beamspace domain.
However, while the PSD for each antenna is also flat, the PSDs
for different beams are localized and each beam captures part
of the flat aggregate PSD as illustrated in Fig. 4. Furthermore,
as discussed in Sec. IV-A and illustrated in Fig. 5, for a given
value of∆ch, approximately∆ch beams are needed to capture
most of the aggregate flat PSD over the bandwidth of interest.

This suggests an approach for designing low-complexity
beamspace receivers that deliver near-optimal performance.
Define the total channel power as

σ2 =
1

W

∫ W
2

−W
2

HH
b (f)Hb(f)df =

∑

i∈I(M)

σ2
i =M

σ2
i =

1

W

∫ W
2

−W
2

Sb,i(f)df =
1

W

∫ W
2

−W
2

|Hb,i(f)|2df (39)

whereσ2
i is the power in theith beam. Since the majority of

the power is captured by approximately∆ch beams, a low-
complexity B-SIMO receiver can be designed by processing
only this set of dominant beams defined as:

M = {i ∈ I(M) : σ2
i ≥ γσ2} (40)

Then if the thresholdγ ∈ (0, 1) is chosen properly,p = |M| ≈
∆ch, and the beams inM will result in an approximately flat
aggregate PSD; see (38) and Fig. 5. The near-optimal B-SIMO
receiver is defined by

gb,ℓ,i(t) =

{

1√
M
(hb,i ∗ ψℓ)(t) i ∈ M

0 i /∈ M . (41)

with norm‖g
b,ℓ
‖2= 1

M2

∫

|Ψℓ(f)|2(
∑

i∈M
D2

M (θ(f)−i∆θ))df .

This gives the following signal and interference terms

Aℓ=
1

M
3

2

∫ W
2

−W
2

|Ψℓ(f)|2
(

∑

i∈M
D2

M (θ(f) − i∆θ)

)

df (42)

Bℓ,ℓ′=
1

M
3

2

∫ W
2

−W
2

Ψ∗
ℓ (f)

(

∑

i∈M
D2

M (θ(f)−i∆θ)
)

Ψℓ′(f)df. (43)

As shown in Fig. 5, whenp ≈ ∆ch,
∑

i∈M
1
MD2

M (θ(f) −
i∆θ) ≈M over the bandwidth, yieldingAℓ ≈

√
M andBℓ ≈

0. So in contrast with the phased array receiver, by performing
space-time filtering overp ≈ ∆ch beams, the low-complexity
B-SIMO receiver is able to attain near-optimum performance.

The full-complexity implementation of the beamspace re-
ceiver is shown in Fig. 3(a), which is also equivalent to the
optimal receiver in Fig. 2(a). A bank ofM filters defined by
hb,i(τ) is applied to each beam (after the transformation into
beamspace throughUM ) before combining and correlation.
The low-complexity near-optimal configuration is shown in
Fig. 3(b) in which the filtering and combining is done over the
dominantp ≈ ∆ch beams inM. This results in a complexity
reduction by a factor ofαθo, compared to Fig. 3(a).
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Fig. 3: Beamspace SIMO Receiver Implementations: (a) Optimal, (b) Low-complexity.

IV. N UMERICAL RESULTS
In this section we first present numerical results that illus-

trate the effects of dispersion in the wideband channel and how
the B-SIMO receiver mitigates this dispersion by processing
the p = |M| dominant beams. We then give results that
compare the receivers’ performance for both single-carrier and
orthogonal frequency division multiplexing (OFDM) wave-
forms. All the results are calculated for aM = 61 element,λc

2
spaced array (6” array at 60 GHz) receiving a signal from a
transmitter located atφo = 55◦ ↔ θo = 0.41 corresponding to
the io = 25-th beam in the B-SIMO receiver; i.e,θo = 25∆θ.

A. Dispersion Effects: Power Loss and Interference
Inspecting the expressions for theAℓ andBℓ,ℓ′ for different

receivers, we note that they are governed by aneffective
channel frequency response E(f) given by

Eopt(f) =M, Epa(f) = DM (θof/fc), Eb(f) =
∑

i∈M
Sb,i(f)

Eopt(f) is flat and thus the optimum receiver captures all sig-
nal power for all basis functions and there is no inference. This
is also true for the beamspace receiver which uses all beams.
From (13) and (15),Sb,i(f) =

1
MD2

M

(

θo
f
fc

+ (io − i)∆θ
)

.

Fig. 4 plotsSb,i(f) as a function of normalized frequency for
5 values ofi centered onio = 25. In particular,Sb,io(f) =
|aHM (θo)H(f)|2 = 1

MD2
M (θo

f
fc
), shown in Fig. 4(c), also
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Fig. 4: Normalized plots of|Hb,i(f)|2/M for anM = 61 element array withθo =
25∆θo for (a) i = 23, (b) i = 24, (c) i = io = 25, (d) i = 26, and (e)i = 27.
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Fig. 5: Normalized plots of

∑
i
|Hb,i(f)|2/M for an M = 61 element array with

θo = 25∆θo for (a) i ∈ {24, 25, 26} and (b)i ∈ {23, 24, 25, 26, 27}

reflects the PSD of the phased-array effective responseEpa(f).
When ∆ch ≪ 1 (|f/fc| ≪ 0.02 over the bandwidth),
Sb,io(f) ≈ M and Sb,i6=io(f) ≈ 0. So both phased array
receiver and the B-SIMO receiver will exhibit no power loss
or interference. Increasing∆ch causes variation inSb,io(f). In
particular for∆ch = 2 (|f/fc| ≤ 0.04) nulls begin to appear
in Sb,io(f). Thus for∆ch ≥ 1 using a phased array receiver
results in power loss and interference, which gets more severe
for larger∆ch. On the other hand, is is clear from Fig. 4 that
the power lost inSb,io(f) is present in the adjacent beams. As
shown in Fig. 5(a) for∆ch ≤ 3 (|f/fc| ≤ 0.06), combining
the three beams centered onio (Fig. 4(b)-(d)) results in an
approximately flat effectiveEb(f) (see also (38)). If∆ch is
increased to 5 (|f/fc| ≤ 0.1), 3 beams are no longer sufficient
but using all the 5 beams shown in Fig. 4 results in a flat
effectiveEb(f) as shown in Fig. 5(b). In general, for a given
∆ch, a B-SIMO receiver withp = |M| ≈ ∆ch dominant
beams (see (41)) is needed for near-optimal performance.

B. SIMO Receiver Performance Comparison
This section compares the performance of phased array

and B-SIMO receivers FirstSINR results are presented for
single carrier systems where theN basis functions are de-
layed versions of the sinc pulse of bandwidthW : ψℓ(t) =
W sinc(W (t− ℓ/W )). The signal power|Aℓ|2 is constant and
the interference power|Bℓ,ℓ′ |2 is completely determined by
|ℓ−ℓ′|. For the values ofα considered|Bℓ,ℓ′ |2 drops below -40
dB of the maximum for|ℓ−ℓ′| > 8. Thus the numericalSINR
results, calculated for the central⌈N

2 ⌉th pulse, provide a good
assessment of theSINR of any pulse forN > 16, except for
edge cases where interference will be at most 3 dB lower. For
the OFDM simulations, we assume that the signal durationT
is sufficiently long so that there is no interference (Bℓ,ℓ′ ≈ 0).
The spectral efficiency is calculated by performing waterfilling
over the subcarriers with theSNR for each calculated via (25).

Fig. 6(a)-(c) plots the single carrierSINR of the different
receivers as a function ofEs

No
for several values ofα (∆ch).

As expected, Fig. 6(a) shows severe performance loss for the

phased array receiver asα (∆ch) increases. For all but the
smallest value ofα, the receiver suffers from interference
and forα ≥ 0.08 (∆ch ≥ 2) this is compounded by severe
power loss due to nulls inDM (θo

f
fc
) over the bandwidth (see

Fig. 4(c)). On the other hand, theSINR of the 3-beam and
5-beam B-SIMO receivers shown in 6(b) and (c), respectively,
exhibit significantly reduced interference, and essentially no
power loss whenp = |M| ≥ ∆ch. Finally, Fig. 6(d) shows the
spectral efficiency of an OFDM system for the phased array
and near-optimal B-SIMO receivers. The plots forα = 0.02
(∆ch = 0.5) show that OFDM eliminates the performance loss
due to interference in the phased array receiver for smaller
values of∆ch. However, the plots forα = 0.12 and 0.2
(∆ch = 3 and 5 ) show that the power loss in the phased
array receiver for∆ch ≥ 2 results in severe and unavoid-
able performance loss. In comparison, the B-SIMO receivers
(p = 1, 3, 5 beams for∆ch = 0.5, 3, 5) suffer from nearly no
power loss or interference. These results demonstrate the near-
optimum performance of B-SIMO receiver with sufficiently
large number of beamsp = |M| ≥ ∆ch.
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Fig. 6: Plots of the single-carrier receiver SINR as a function of Es/No for the LoS
SIMO channel: (a) the phased array receiver, and the near-optimal beamspace receiver
with (b) 3 beams and (c) 5 beams. (d): OFDM spectral efficiencyof the phased array
and near-optimal beamspace receivers for the same LoS SIMO channel.

V. EXTENSIONS: MISO, MIMO AND MULTIPATH

We briefly discuss extensions of the new wideband SIMO
system model developed in Sec. II to MISO, MIMO, and mul-
tipath channels. Consider a MISO system with anMT -element
ULA transmitter communicating with a single-antenna re-
ceiver located atφT,o ↔ θT,o; see (8). The LoS wideband
MISO system model (baseband frequency domain) is

R(f) = HH(f)X(f) +W (f) ; H(f) = aMT
(θT (f)) (44)

whereR(f) is received signal,X(f) is the transmitted signal
vector, W (f) is noise, and the frequency-dependent beam
angleθT (f) is related toθT,o as in (13). TheMR ×MT LoS
MIMO model readily follows:

R(f)=H(f)X(f)+W (f); H(f)=aMR
(θT (f))a

H
MT

(θR(f))

where the LoS path with transmit/receive directions
(φT,o, φR,o) ↔ (θT,o, θR,o) induces the frequency-dependent
beam angles(θT (f), θR(f)) in the array steering vectors that
define the channel frequency response matrixH(f). Finally,



the channel matrix for a wideband multipath MIMO channel
can be modeled as

H(f) =

Np
∑

ℓ=1

βℓaMR
(θR,ℓ(f))a

H
MT

(θT,ℓ(f))e
−j2πτℓf (45)

whereNp denotes the number of paths, and theℓ-th path
is associated with a path gainβℓ, angle of departureφT,ℓ,
angle of arrival φR,ℓ, and delayτℓ. The physical angles
(φT,ℓ, φR,ℓ) ↔ (θT,ℓ, θR,ℓ) induce frequency-dependent beam
angles(θT,ℓ(f), θR,ℓ(f)) as in (13). The beamspace represen-
tation ofH(f) is given by

Hb(f)=U
H
MR

H(f)UMT
= [Hb,i,m(f)]i∈I(MR),m∈I(MT )

Hb,i,m(f)=

Np
∑

ℓ=1

βℓDMR
(θR,ℓ(f)− i∆θR)

DMT
(θT,ℓ(f)−m∆θT )e

−j2πτℓf , (46)

where∆θT = 1/MT and∆θR = 1/MR are the orthogonal
beam spacings for the transmit and receive ULAs.

We note that conventional frequency-selective MIMO mod-
els (see, e.g., [17]) can be recovered from the above gen-
eral wideband MIMO models by replacing the frequency-
dependent transmit/receive beam angles for each path
(θT,ℓ(f), θR,ℓ(f)) with their corresponding fixed values
(θT,ℓ, θR,ℓ)=(θT,ℓ(f), θR,ℓ(f))|f=0 defined atf= fcvia (8).
These conventional models also correspond to the phased
array models discussed in the SIMO case. Similarly, we can
define transmit/receive channel dispersion factors for each
path: ∆ch,T,ℓ = MTαθT,ℓ and ∆ch,R,ℓ = MRαθR,ℓ,. The
most important implication is that each path will be associated
with a ∆ch,R,ℓ beams at the receiver and∆ch,T,ℓ beams at
the transmitter captured by a corresponding∆ch,R,ℓ×∆ch,T,ℓ

sub-matrix of the beamspace matrixHb(f). Low-complexity
B-MIMO transceivers operate on these sub-matrices for each
path to deliver near-optimal performance.

VI. CONCLUSIONS ANDDISCUSSION

We have presented a study of wideband, high-dimensional
SIMO systems for LoS channels. We developed a channel
model that reveals the coupled signal dispersion in time and
spatial angle and identified a keychannel dispersion factor
∆ch = Mαθo that captures the magnitude of this disper-
sion as function of critical system parameters. In addition
to characterizing the power loss and interference in phased
array receivers,∆ch represents the number of dominant beams
needed in the beamspace receivers to account for dispersion.
This motivated the design of B-SIMO receivers that perform
space-time processing only over these∆ch dominant beams
resulting in dramatic complexity reduction. Our results showed
the significant performance loss in phased array receivers even
for relatively narrow bandwidths, and the near-optimum per-
formance of the low-complexity B-MIMO receivers. Finally,
we outlined extensions of the wideband LoS SIMO model
to MISO, MIMO, and multipath that serve as guidelines for
further research (e.g. multiuser MIMO).

The results of this paper are particularlarly relevant to mm-
wave systems, where even current systems have encountered
issues due to beam squint [11]. So if phased array based
analog beamforming and larger bandwidths are used to im-

plement mm-wave transceiver architectures that utilize high
dimensional arrays (e.g. [9]), performance loss will occur.
However, the large array dimension makes recovering this lost
performance via digital beamforming, e.g. using OFDM with
a different digital beamformer for each subcarrier, impractical.
Thus transceivers combining multi-beam B-MIMO processing
with analog beamforming provide the best route for acheiving
the full performance in wideband, high dimensional mm-wave
MIMO. In particular lens-based analog beamforming [1], [5]
are a natural choice for such transceivers. Finally, although the
results of this paper were derived for orthogonal waveforms,
the concept of space-time processing over multiple orthogonal
beams also applies to non-orthogonal waveforms, e.g. [18].
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