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Information Science and Technology

Communication and computing technology have progressed tremendously in the last 50 years!
These technological advances have impacted all aspects — social, economic, political — of our lives

— Cloud, edge, and mobile computing
— Key enabler: anytime, anywhere wireless connectivity

Wireless Infrastucture: A Heterogeneous Network
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AMS 2019

customer access rate (b per s)

Nothing Lasts Forever -
Computing and Communication Crunch

Relentless march of the information technology over the last 50+ years is hitting physical limits

Communication capacity crunch:

spectrum congestion
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Computing capacity crunch:
(slow) demise of Moore’

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) SHfE
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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Challenges Bring Opportunities o
(Exciting Times for Scientists and Engineers)
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High-Band Communication:
Quantum computing: Millimeter-wave (mmW) and higher frequencies
Bits to qubits
5G

6 GHz 24 GHz 100 GHz

@ 0

Large Millimeter Wave Bandwidth Opportunity

Image courtesy of Qualcomm
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JillN B ||

Source: towardsdatascience.com 700 MHz 2GHz  3GHz 5GHz 6GHz 20GHz 40GHz B0GHz 80GHz

Licensed - Available Today (Sub 6 GHz)
I Unlicensed - Available Today
I FCC Proposed High Band Spectrum

Source: CTIA-5G white paper
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Emerging Information Science and Technologies:
Key Common Attributes

Cross-Disciplinary Research

— Signal processing, communication, networking, hardware, circuits and antenna
— Physics, math, engineering, computer science

Experimental testbed development

— Microcosm of research & technology challenges; workforce training

Machine learning and artificial intelligence techniques

— A thoughtful marriage of ML/Al and IS&T would not only benefit IS&T but also benefit ML/Al in
terms of explainable/understandable Al

Optical and photonic principles, techniques and technologies

— Wireless at higher frequencies (and larger bandwidths)optical; electro-optical methods
— Microwave and photonic techniques key to quantum information science and engineering

WISCONSIN

MADISON




Cross-Disciplinary O
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Research & Technology Development
Quantum Information Science and Engineering mmW Wireless
QISE NSF Research Coordination Network

QUANTUM INFORMATION

Antennas Networking
mmW circuits Prototypes Protocols

ADCs/DACs & Testbeds (NET)
Digital . .

Communications
& Signal Processing
(CSP)

Academia

24

Government
Agencies

Physicists Mathematicians

- Computer Scientists

NIST
Goal: Cross-fertilization of ideas to guide and accelerate mmW
research, innovation and technology development
https://www.nist.gov/topics/quantum-information-science Main takeaway: The key research challenges are at the interfaces:

HW-CSP, CSP-NET

AMS 2019 https://mmwrcn.ece.wisc.edu/
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Two Physical Advantages of mmW

Large bandwidth & narrow beams

6” x 6” access point (AP) antenna array: 9 elements @3GHz vs 6000 elements @80GHz

Potential of beamspace multiplexing

15dBi @ 3GHz 35dBi @ 30GHz Power & Spec. Eff. Gains over 4G
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Key Challenge: Hardware Complexity & Comp. Complexity (# T/R chains)
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Beamspace Channel Sparsity W
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mmW propagation X-tics

e Directional, quasi-optical e Single-bounce multipath
* Predominantly line-of-sight * Beamspace sparsity
Point-to-multipoint MIMO link Point-to-multipoint multiuser MIMO link
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high (n)-dim. spatial signal space
low (p)-dim. comm. subspace

How to access the p active beams with the lowest - O(p) - transceiver complexity?

AMS 2019 (AS & NB Allerton '10; Pi & Khan ‘11; Rappaport et. al, ‘13) 7




Hybrid Analog-Digital Beamforming Wity

Lens Array Hybrid Architecture Phased Array Hybrid Architecture
p data PTR+ p data
streams DAC/ADG T, streams  pTR+
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Hybrid beamforming
n T/R chains: prohibitive hardware + comp. complexity (RH et al., JSTSP 2017)
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28 GHz Multi-beam CAP-MIMO Testbed (HW-CSP-NET) W,SCONS[N

P2MP Link

ADCs and FPGA [

Features
* Unmatched 4-beam steering & data multiplexing
* RFBW: 1 GHz, Symbol rate: 370 MS/s -1 GS/s

e Fully discrete mmW hardware

* FPGA-based backend DSP

AMS 2019

CAP-MIMO AP B

Microcosm of technical 6"
challenges

Equivalent to
600-element
conventional array!
Beamwidth=4 deg

1-4 switch for
each T/R chain

Use cases

e Real-time testing of PHY-MAC protocols
* Multi-beam channel measurements
e Scaled-up testbed network

(JB, JH, AS, 2016 Globecom wkshop, 5G Emerg. Tech.; AS, CH, YZ, mmNets 2017)
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Lens with 16-feed Array




5G Wireless: Key Use Cases and Operational Parameters iz

......
ooooo
-
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Stringent operational requirements drive x-disciplinary research

10

e.g. multi-Gigabits/s rates & millisecond latency
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CSP-HW Challenges

e Energy-performance-complexity tradeoffs
e Analog vs Digital Signal Processing:
— Hybrid beamforming & interference nulling
— Hybrid temporal signaling/filtering (OFDM)
e PA efficiency — digital predistortion
e Non-ideal device characteristics over large bandwidth:
— Non-flat frequency response; I/Q mismatch
e New models needed that incorporate non-idealities
e Technology for RF integration (Si, GaAs, InP, GaN, ...)
e New methodologies for Over-the-Air (OTA) testing
AMS 2019

CSP-NET Challenges 9
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End-to-end latency

M Transport + core

N |
W BTS processing
13 W UE processing
B Scheduling
10 [ | B Buffering
Uplink transmission
3 B Downlink transmission
. —
HSPA

0 L__| —
LTE 496 5G

Figure 2. Round trip time evolution from 3G to 5G. nokia
| Downlink transmission | 2 ms 1ms 0.14ms 0.125ms |
| Uplink transmission 2ms 1ms 0.14 ms 0.125 ms
| Frame alignment 2ms 1ms 0.14 ms 0.125ms

Scheduling 1.3 ms? 0-18 ms’ Pre-scheduled Contention based and

pre-scheduled

| UE processing 8ms 4&ms 0.50 ms 0.250 ms
| BTS processing 3ms 2ms 0.50 ms 0.250 ms
| Transport + core 2 ms (including RNC) 1ms 0.1 ms (local conten§ 0.1 ms (local content)
|Tc:ta| 20ms 10-28ms 1.5ms 1.0ms |

'Scheduling period + capacity request + scheduling decision + PDCCH signaling.  #Just Shared Controd Channel [SCCH)

e PHY-MAC and higher layer protocols for
exploiting wideband multi-beamforming

Gb/s speeds and sub-millisecond latency
— Edge & cloud computing
— Continuous network monitoring & adaptation

e Accurate network models

TY
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Measurements to Modeling to Network W
Simulators & Emulators (HW-CSP-NET)

Google’s self-driving car use lidar to create 3D images

Need: Accurate performance prediction prior to deployment
Current network models (e.g., ns-3) are limited
— Need: Multi-beam PHY capabilities
Current mmW channel models limited
— Sounders with limited capability
— Need: models for beam dynamics & blocking
Opportunity: Measurements + computational power
— Multi-beam sounders & measurements
— Ray tracing (combined with LIDAR, e.g.)

— = accurate channel models

- Accurate Network Simulators & Emulators

Opportunity: machine learning + data analytics

Channel Sounders Channel Modeling, Network Simulators
b Simulators & Emulators - & Emulators

(HW) (HW-CSP) (CSP-NET)

AMS 2019

(Xconfluence)

5G channel model alliance, NYU, U. Padova, Bristol, NCSU, CRC, UW, NIST, SIRADEL .... 1




Quantum Information Science and Engineering (QISE) A

MADISON

Exploiting the unique (and non-intuitive) aspects of quantum physics to develop new
technologies for sensing, generation, processing and communication of information

Three key aspects of quantum physics underlying QISE:

* Superposition

* Entanglement (spooky action at a distance)

* Interference (in phase space to shape the probabilities of different outcomes)

® 0 0)

'}
® ! 1)

Classical Bit Qubit

AMS 2019
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QISE Principle 1: Superposition

@0 N
=)+ one qubit: |¢) = ap|0) > +aq[l) 2-dim. system

® ~n : 2"-dim.

1 ) 1 qubits: |¢1> = W2> @ W”) tensor product space

Classical Bit Qubit

Why is guantum different??

1. Superposition

N qubits

)

Classical states Quantum states

AMS 2019 Towards Data Science - Towardsdatascience.com
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n-dim quantum system
wavefunction

) = auli

Measurement — the system
wavefunction [¢) collapses
into state ¢ with probability

p(i) = Jos|?

D lail* =) pli)=1
i=1 i=1

14
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Superposition in Action

SUPERPOSITION

Measurement/observation collapses the wavefunction into one definite state

https://www.nist.gov/topics/quantum-information-science
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QISE principle # 2: Entanglement WiSEBRE

Wavefunction of two

Why is guantum different? entangled photons
2. Entanglement

1
7 Hf)>\0> + \D!{)]

The states of entangled

qubits cannot be described

independently of each other — Photon 1 Photon 2

Super-dense coding
Secure communication
Quantum computing

: . Enhanced measurement
Spooky action at a distance

AMS 2019 16
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Quantum Algorithms

uantum algorithms

Unleash ™= machine comes toa solution by using the physical
principles of interference to magndy the amplitude
of the correct answer and shrink InComect answers.

the
Some problems require Rerating steps 2 and 3

2
The problem is encoded onto the
Power

Encode
systern by applying gates. wheh
put information into the phases

1
Activate Memacioeis |
2 C N
ndibans the
Problem and ampitudes of all 2° states.

an equal superposition
of all 2° states.

IBM Research
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Quantum Computing

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better
make it quantum mechanical — Richard Feynman (1981)

0
® 0 > |0)
- - -
. - T-=~ 1
1994 — Shor’s algorithm '0>}| )
- T~ 2
o ! / f Toward Quantum Supremacy
100 i P .
Classical Bit Qubit Criteria for data point inclusion:
Source has demonstrated controlled, coherent manipulation of
10,000 individual quantum objects, such as multi-qubit gates or generation of
mutual entanglement. Data point sources listed in the Notes. Not yet
meeting criteria for inclusion: Google, 72 Qubits; IBM & Intel, 49 Qubits.
1,{}[}0 ‘ as® 4 ,
(7)) .o'.
5 10 o
Number 3 e @
Df 100 oe® °®
Qubits ....o‘.. y = 4E-82e0-0944x
S90S g R? = 0.9071
10 D-Wave Two o g Qubits double roughly every 7.3 years
)\ 512 qubit ®
1
2010 2014 2016 Year

2002 2006

Futuregrasp, LLC

1§
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The Bigger Picture of QISE
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e Quantum Sensing Quantun"
e Quantum Simulation %x‘ Ieaps

Chinese Quantum Satellite Sends
First ‘tUnhackable’ Data to Earth

Q

Entangied photon N'J.. st
from space to Earth
o IUO & 110

A mind-bending technology goes mainstream

Fathers of Quantum
Planck, Bohr, Heisenberg, Shrodinger

propet
pn are instantly teleported
Micius.

Pan Jianwei
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Opportunities for Signal Processing, Communications
and Information Science Communities

WISCONSIN

MADISON

e Encoding, entanglement, decoding — intrinsically signal processing/communications
operations
— Encoding (TX): modulation and coding of information into qubits
— Decoding (RX): measurements and processing to recover transmitted qubits
— Entanglement: coupling between input and output Hilbert (vectors) spaces
— System model: interacting tensor product (input x output) Hilbert spaces

e A Vital Role for Signal Processing, Communications and Information Science Communities
— Mathematical modeling and analysis of Quantum Information Processing (QIP) Systems
— Input Qubits, Output Qubits, Quantum Channels

AMS 2019 21




Cross-Disciplinary Challenges & Opportunities for the @ |
Fearless (and Inspired)

Engineering Physics Computer Science
Physics Mathematics Mathematics
Material Science Engineering Engineering

Interface 2:
systems models &
QIP algorithms

Interface 1:
system models &
Physics/devices

Mathematical

Physical j
Realization ?\tnP:ysi!cal QIP Algorithms
of QIP odeling

Systems of QIP Systems

If you think you understand quantum mechanics, you don't understand quantum mechanics — Feynman/Bohr

Serendipitous (Random Walk) Innovation

AMS 2019 22
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Future QISE Research Framework:

Cross-Disciplinary & Convergent

Math & Physical
Qubit Models

Physical
Realization

Algorithms

Accelerated (Directed) Innovation
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NSF’s 10 Big Ideas

MATHEMATICAL, >
w STATISTICAL, ‘« OPEN R
COMPUTATIONAL ; EDUCATION
g FOUNDATIONS ¢, WORKFORCE

ANALYTICSZ & DATA SCIENCE]

HARNESSING THE
DATA REVOLUTION

FUNDAMENTAL RESEARCH# MACHINE

DOMAIN UJ RESEARCH LEARNING
© SCIENCE . & DATA
CHALLENGES *— CYBERINFRASTRUCTURE

= MODELING & DATA

O\/ERY

STATI

v MNNG

Harnessing the Data The Quantum Leap: Leading The Future of Work at the

Revolution the Next Quantum Revolution Human-Technology Frontier

Understanding the Rules of Nailigating the New Arctic
Life: Predicting Phenotype

NSF 2026: Seeding Innovation Growing Convergence Research at NSF

Universe: The Era of
Multi-messenger
Astrophysics

NSF INCLUDES Enhancmg STEM through

Diversity and Inclusion

THE UNIVERSITY

WISCONSIN

MADISON
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Concluding Remarks WiSEBRER

QISE is a major national (and international) priority in science and technology
The opportunities are enormous and the challenges equally daunting
Necessitate a truly cross-disciplinary approach

— Signal processing, communication, networking, hardware, circuits and antenna

— Physics, math, engineering, computer science

— We all need to roll up our sleeves and get our hands dirty!
Unique x-disciplinary opportunities for signal processors, communication
engineers, information scientists & engineers, computer scientists & engineers

Design and development of prototypes and testbeds

— A microcosm of technical challenges
— An unmatched training opportunity

Need a fresh approach for research collaboration and coordination

— Academia, industry, and national labs

Accelerated Discovery & Innovation
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