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Explosive Growth in Wireless Traffic
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Current Industry Approach: 
Small Cells & Heterogeneous Networks

Key Idea:
Denser spatial reuse 
of limited spectrum

Courtesy: Dr. T. Kadous (Qualcomm) Courtesy: Dr. J. Zhang (Samsung)

Some challenges: interference, backhaul
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New Frequencies: mm-wave and cm-wave
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Mm-wave - Short range: 60GHz
Longer range: 30-40GHz, 70/80/90GHz

Current cellular wireless: 300MHz - 5GHz
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cm-wave: 6-30GHz
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Mm-wave Wireless: 30-300 GHz 
A unique opportunity for addressing the wireless data challenge

– Large bandwidths (GHz) 

– High spatial dimension: short wavelength (1-100mm)  

Beamwidth: 2 deg
@ 80GHz

35 deg
@ 3GHz

45dBi

15dBi

80GHz

3 GHz

Highly directive narrow beams
(low interference/higher security)

6” x 6” antenna @ 80GHz: 6400-element antenna array

Compact high-dimensional (massive) multi-antenna arrays 

Large antenna gain
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Current & Emerging Applications 

• Wireless backhaul; alternative to fiber 

• Indoor wireless links (e.g., HDTV) IEEE 802.11ad, WiGig

• Smart base-stations for 5G mobile wireless (small cells)

• New cellular/mesh/heterogeneous network architectures

• Space-ground or aircraft-satellite links 

Multi-Gigabits/s speeds
Multiple Beams
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Key Opportunities and Challenges

• Hardware complexity: spatial analog-digital interface

• Computational complexity: high-dimensional DSP

Electronic multi-beam steering & MIMO data multiplexing

Our Approach: Beamspace MIMO

Key Challenges:

Key Operational Functionality: 

AMS - mmW 3D MIMO (AS&NB’10; JB,AS&NB ‘13) 6

Beamspace MIMO

Antenna space 
multiplexing

Beamspace
multiplexing

Discrete Fourier Transform 
(DFT)

n dimensional signal space

n-element array
(     spacing)

n orthogonal beams

Related: communication modes in optics (Gabor ‘61, Miller ‘00, Friberg ‘07) 

n spatial channels

(AS’02; AS&NB ’10; JB,AS&NB ‘13)
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Multiplexing data into 
multiple highly-directional (high-gain) beams
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n-element (Phased) Antenna Array

Spatial angle

TX: steering vector
or 

RX: response vector

AMS - mmW 3D MIMO

Spatial frequency:

n-dimensional 
spatial sinusoid
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Orthogonal Spatial Beams

n orthogonal spatial beams

DFT spatial modulation matrix: 

n = 40Spatial resolution/beamwidth:

(DFT)

Unitary

AMS - mmW 3D MIMO

(n-dimensional orthogonal basis) 
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Antenna vs Beamspace Representation
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TX RX

(AS’02)

(DFT)(DFT)

Multipath 
Propagation
Environment

MIMO Channel Matrix

(correlated) (decorrelated)

Multipath 
channel:

Massive MIMO Channel: 
Beamspace Sparsity

Point-to-point 
LoS Link

Point-to-multipoint
multiuser link

Communication occurs in a low-dimensional (p) subspace
of the high-dimensional (n) spatial signal space

How to optimally access the communication subspace 
with the lowest – O(p) - transceiver complexity?

(DFT)
(DFT)

TX Beam Dir.

R
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• Directional, quasi-optical
• Primarily line-of-sight
• Single-bounce multipath

11

Massive Arrays (mmW)

(AS&NB’10; Pi&Khan‘11; Rappaport et. al,‘13) 
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Continuous Aperture Phased (CAP) MIMO

Lens computes 
analog spatial DFT

Data multiplexing 
through

active beams

Performance vs Complexity Optimization 

p digital 
data streams

n analog 
beams

O(p) transceiver
complexity Beam Selection

p << n
active beams 

AMS - mmW 3D MIMO

Practical Hybrid Analog-Digital Beamspace MIMO Transceiver
(patented)

(AS & NB‘10, ‘11; JB, AS, NB, ‘13) 12

Focal surface feed antennas:
direct access to beamspace

Digital vs Analog Beamforming: 
Spatial Analog-Digital Interface

CAP MIMO:
Analog Beamforming

Conventional MIMO:
Digital Beamforming

Beam Selection
p << n

active beams 

O(p) transceiver complexityO(n) transceiver complexity

n: # of conventional MIMO array elements (1000-100,000)

p: # spatial channels/data streams (10-100)
AMS - mmW 3D MIMO 13

p data 
streams p data 

streams
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CAP-MIMO vs Phased-Array-Based 
Hybrid Architectures

Multi-beam forming 
mechanismO(p) transceiver 

complexity

Lens
+

Beamspace Array
+

mmW Beam Selector 
Network

Phase Shifter
Network (np)

+
Combiner 
Network

CAP-MIMO:

Phased-Array-Based:
n phase shifters 
per data stream

AMS - mmW 3D MIMO (e.g., Samsung; Ayach et. al ‘12) 14

Point-to-Multipoint Network Links
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(siliconsemiconductor.net)

Fixed (backhaul) and dynamic (access) links

Electronic multi-beam steering and MIMO data multiplexing
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Dense Beamspace Multiplexing

x 2-200 increase in capacity 
due to beamspace multiplexing

x 10-100 increase in capacity 
due to extra bandwidth 
(~1-10GHz vs 100MHz)

200Gbps-200Tbps (per cell throughput)
(20-200Gbps/user)

30dB
Ant. gain

6” x 6” antenna

small-cell access points

Beamspace
channel sparsity

AMS - mmW 3D MIMO
(JB&AS ’13; JB&AS ’14)

Idealized upper bound (non-interfering K users):

16

2D Arrays for Small-Cell AP
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k-th user channel:

Beamspace
Transformation 

Matrix:

(JB&AS’14)

2D steering vector:
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Small-Cell Design: 2D Beam Footprints 

AMS - mmW 3D MIMO (JB&AS’14)

0.5” x 3” antenna @ 80GHz 2.3” x 12” antenna @ 80GHz

18

1.1” x 6” ant. 
@ 80GHz

Cell coverage (200 m x 100m)

Sparse Beamspace Linear Precoding

AMS - mmW 3D MIMO

Lower-dimensional system

Beamspace precoder:

Multiuser channel:

19

Sparse set of dominant active beams
(power thresholding)

Downlink system:
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Sum Capacity: Sparse MMSE Precoding

AMS - mmW 3D MIMO 20

(MMSE precoder: 
Joham, Utschick, & Nossek 2005)(JB&AS ‘13, JB&AS ‘14)

Capacity:

MMSE
Precoder:

Beamspace
Downlink:

2D Array AP: Performance vs Complexity

AMS - mmW 3D MIMO

p=K=100
beams

p=4K=400
beams

p=16K=1600
beams

p=K=100 
(0.5” x 3”)

p=4K=400
(1.1” x 6”)

p=16K=1600
(2.3” x 12”)

4 beam mask/user
vs

Full dimension

Upperbound vs MMSE precoder performance

21

2.3” x 12” ant. 
@ 80GHz

0.5” x 3” ant. 
@ 80GHz

1.1” x 6” ant. 
@ 80GHz

400 max
active beamsx 3

x 10

p=16K=1600

2-3 x times larger number of
antennas in conventional arrays
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10GHz CAP-MIMO Prototype
40cm x 40cm 

Lens array

n=676, p=4 (channels), R=10ft

10 GHz LoS prototype theoretical performance:
100 Gigabits/sec  (1 GHz BW) at 20dB SNR

Compelling gains over state-of-the-art 
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DLA 1
DLA 2

(JB,AS,NB ’13; JB,PT,DV,AS ’14)

FPGA DAC IQ

VCO

BPF PA

FPGAADC

LNA BPF IQ

LO

Initial 2x2 Spatial Multiplexing Test
● 2 Spatial Channels ● 500 Mbps data rate
● Separate LO at TX and RX ● Separate TX and RX sample clocks

16 kbit test image 179 bit errors 0 bit errors

Transmitted 4-QAM Symbols Channel 1 received symbols with 
ISI and ICI

After MMSE MIMO processing to suppress 
spatial ICI

AMS - mmW 3D MIMO 23



13

• Gen 2 prototype: 28 GHz, advanced functionality, higher BW

• Channel Measurements: truly massive and true beamspace

• Beam Selector Architecture; Channel Estimation & Discovery

• Spatial Analog-Digital Interface
– High rates make DSP  power hungry; more analog processing?

• Wideband High-Dimensional MIMO
– Revisit “narrowband” model

– OFDM, SC, SC-FDMA?

Ongoing Related Work

AMS - mmW 3D MIMO 24

5G Use Cases of mmW MIMO Networks

(Source:  3G.co.uk)

Availability:
Atmospheric 

absorption “small cell” 
Access Network

Backhaul
network

Multi-Gbps
speeds

(siliconsemiconductor.net)AMS - mmW 3D MIMO 25
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Conclusion

• Beamspace MIMO: Versatile theory & design framework 

• CAP-MIMO: practical architecture 
– spatial A-D interface + DSP complexity 

• Compelling advantages over state-of-the-art
– Capacity/SNR gains

– Operational functionality

– Electronic multi-beam steering & data multiplexing

• Timely applications (multi-Gigabits/s speeds)
– Wireless backhaul networks; Indoor short-range links  

– Smart 5G Basestations: Dense Beamspace Multiplexing

• Prototyping: tech. demo + ch. meas. + industrial partnership
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Performance-complexity
optimization
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