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Abstract—This paper develops a general framework for commu-
nication over doubly dispersive fading channels via an orthogonal
short-time Fourier (STF) basis. The STF basis is generated from
a prototype pulse via time–frequency shifts. In general, the or-
thogonality between basis functions is destroyed at the receiver
due to channel dispersion. The starting point of this work is a
pulse scale adaptation rule first proposed by Kozek to minimize
the interference between the basis functions. We show that the
average signal-to-interference-and-noise (SINR) ratio associated
with different basis functions is identical and is maximized by the
scale adaptation rule. The results in this paper highlight the crit-
ical impact of the channel spread factor, the product of multipath
and Doppler spreads, on system performance. Smaller spread
factors result in lesser interference such that a scale-adapted
STF basis serves as an approximate eigenbasis for the channel.
A highly effective iterative interference cancellation technique
is proposed for mitigating the residual interference for larger
spread factors. The approximate eigendecomposition leads to an
intuitively appealing block-fading interpretation of the channel
in terms of time–frequency coherence subspaces: the channel
is highly correlated within each coherence subspace whereas it
is approximately independent across different subspaces. The
block-fading model also yields an approximate expression for the
coherent channel capacity in terms of parallel flat-fading channels.
The deviation of the capacity of doubly dispersive channels from
that of flat-fading channels is quantified by studying the moments
of the channel eigenvalue distribution. In particular, the differ-
ence between the moments of doubly dispersive and flat-fading
channels is proportional to channel spread factor. The results in
this paper indicate that the proposed STF signaling framework is
applicable for spread factors as large as 0 01.

Index Terms—Capacity, doubly dispersive channels, Gabor sys-
tems, random banded matrices, time-varying multipath channels.

I. INTRODUCTION

WIRELESS channels typically exhibit time-varying mul-
tipath fading and can be modeled as linear doubly dis-

persive stochastic channels. The signal experiences dispersion
in both time and frequency as it passes through the channel.
The multipath effect causes dispersion in time, while the time-
varying channel gain associated with each path results in dis-
persion in frequency. As compared to our understanding of the
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classical additive white Gaussian noise (AWGN) channel, mod-
ulation and coding for doubly dispersive fading channels tend
to be quite challenging and different from that for the AWGN
channel.

A general approach to digital communication is orthogonal
signaling in which transmitted symbols are modulated onto
a set of orthonormal basis waveforms. An important class of
such schemes is orthogonal frequency-division multiplexing
(OFDM) or the discrete multitone modulation (DMT) [1]. In
essence, OFDM divides the channel into many small frequency
bands and is well suited for a time-dispersive (frequency-se-
lective) channel [2]. For a slowly fading frequency-selective
channel, longer symbol durations (narrow frequency bands) are
desirable for mitigating the effect of multipath. However, longer
symbol durations are more prone to frequency dispersion due
to temporal channel variations. Thus, we see that in doubly
dispersive channels, the symbol duration is constrained by
conflicting requirements dictated by temporal and spectral dis-
persion. This suggests signaling over short-time Fourier (STF)
basis functions whose time–frequency support is matched to
channel characteristics.

STF signaling over doubly dispersive channels has been ex-
plored by several researchers [3]–[7]. We briefly review this
work to put the results of this paper in proper perspective. An
STF basis is generated from a given prototype pulse via time and
frequency shifts (see (8)). It is also referred to as a Gabor basis
or a Weyl–Heisenberg basis in the literature on time–frequency
analysis. The time separation and frequency separation

between STF basis functions critically affect the time–fre-
quency characteristics of an STF basis. Complete orthogonal
STF bases are only possible for (critical sampling)
but are known to suffer from poor time–frequency localization
(see, e.g., [8], [9]). If we relax the condition of critical sampling
and consider , STF bases with better time–frequency
localization properties can be generated, but they are necessarily
incomplete. Several researchers have investigated such incom-
plete systems for doubly dispersive channels; a particular focus
has been on pulse shape optimization to attain good time–fre-
quency localization [3]–[6]. In this case, two sets of biorthog-
onal bases are used: one at the transmitter for modulating the
symbols, and one at the receiver for recovering the symbols. The
two bases are intimately related via a duality relationship (see,
e.g., [10], [3]).

The time–frequency dispersion induced by a time-varying
multipath channel destroys the orthogonality/biorthogonality
condition in the above systems. As a result, there is interfer-
ence between different basis functions at the receiver. A key
motivation of the above works on biorthogonal systems is that
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bases with better time–frequency localization lead to lesser
interference between basis functions. While these works study
basis design quite thoroughly from a time–frequency localiza-
tion perspective, the communication and information-theoretic
aspects of STF signaling over dispersive channels are not
fully explored. The most comprehensive study of incomplete
bi-orthogonal systems in a communication context is done
in [3]. However, the improvements due to pulse optimization
are only quantified in terms of the mean-square error (MSE)
in reconstructing the information symbols at the receiver.
While biorthogonal systems have less interference compared
to orthogonal systems, they suffer a loss in spectral efficiency
compared to orthogonal systems (which have maximum spec-
tral efficiency) by a factor of .1 As we demonstrate
in this paper, the spectral efficiency has a linear impact on
overall system capacity whereas interference has a logarithmic
impact (due to improvements in effective signal-to-interfer-
ence-and-noise ratio (SINR)). Thus, it is attractive to consider
orthogonal systems in conjunction with techniques for miti-
gating interference. In fact, the numerical results reported in
[3] strongly suggest this: with a choice of (half
the spectral efficiency of orthogonal systems), they report an
MSE/interference improvement by a factor of at most.

In this paper, we develop a general framework for orthog-
onal STF signaling over time-varying multipath channels and
study its performance from both communication and informa-
tion-theoretic viewpoints. Our analysis is based on the wide-
sense stationary uncorrelated scattering (WSSUS) model for
doubly dispersive channels [11], [12]. We consider complete
orthogonal STF bases and assume that the pulse prototype is
given a priori. A key to reliable communication is a funda-
mental understanding of the interaction between the signaling
basis and the channel. In this context, the key channel param-
eters are the multipath spread and the Doppler spread .
In particular, our focus is on underspread wireless channels (for
which ) since most radio-frequency wireless chan-
nels fall within this category [12]. The key corresponding basis
parameters are the support of basis functions in time and in fre-
quency. The starting point of our work are two attractive prop-
erties of orthogonal STF basis functions first reported in [4],
[3]: 1) An appropriately chosen STF basis serves as a set of ap-
proximate eigenfunctions for underspread linear time-varying
systems, and 2) the prototype pulse’s duration and bandwidth
can be matched to the delay and Doppler spreads of the channel
(pulse scale adaptation) to minimize the interference between
basis functions.

The first contribution of this paper is a rigorous investiga-
tion of these two properties from a communication-theoretic
viewpoint. Specifically, we derive an exact expression for the
received SINR associated with each basis function and show
that it is identical for all basis functions due to the channel
stationarity in time and frequency in the WSSUS model. The
SINR depends on an interference index, governed by the inter-

1The dimension of the space of signals with duration T and bandwidth W
is approximately TW for large TW . The number of basis functions in an STF
basis is given by N = TW=T F . Thus, N = TW for an orthogonal system
whereas N < TW for a biorthogonal system, yielding N =N=1=T F <1
since T F > 1.

action between the channel and the pulse prototype, and max-
imizing the SINR is equivalent to minimizing the interference
index. In [4], a similar interference minimization criterion was
proposed from the viewpoint of “diagonalization” (eigenprop-
erty) of the system operator, and in [3] it was proposed from
the viewpoint of minimizing the MSE in the reconstruction of
the transmitted symbols at the receiver. We then cast minimiza-
tion of the interference index as an optimization problem over
the pulse scale and analytically derive the optimal pulse scale
adaptation rule for a class of pulses. The pulse scale adaptation
rule was proposed in [4], [3] based on heuristic arguments by
studying specific pulse shapes. To our knowledge, our derivation
of the optimal pulse scaling rule is the most rigorous and most
appropriate from a communication-theoretic viewpoint (SINR
maximization). Furthermore, the derivation of the pulse scaling
rule is the only overlap of our work with existing work on STF
signaling.

We now provide a summary of the remaining results in this
paper that build on optimal pulse scale adaptation. Overall,
our results highlight the critical effect of the channel spread
factor from a communication and information-theoretic
viewpoint. For a given delay spread , small spread factors
correspond to slowly fading channels (small ), while large
spread factors correspond to fast fading channels (large ).
For sufficiently small spread factors, the residual interference
can be made very small after pulse scale adaptation and thus
the corresponding STF basis functions serve as approximate
eigenfunctions of the channel. We show that the approx-
imate eigendecomposition yields an intuitively appealing
block-fading interpretation of the effect of the channel in terms
of time–frequency coherence subspaces: the channel remains
highly correlated within each coherence subspace whereas it
is approximately uncorrelated across different coherence sub-
spaces. The number of independent coherence subspaces equals
the delay-Doppler diversity afforded by the channel which is
proportional to [13]. On the other hand, channels with
larger spread factors exhibit significant residual interference
even after pulse-scale adaptation. For such rapidly time-varying
channels, we propose a highly effective residual interference
cancellation technique, sequential iterative interference cancel-
lation (SIIC), which yields an impressive performance gain.
Thus, the approximate block-fading model is applicable to
larger values of when pulse scale adaptation is used in
conjunction with interference cancellation at the receiver.

The block-fading channel interpretation in terms of time–fre-
quency coherence subspaces also yields an approximate
expression for the coherent capacity of doubly dispersive
channels. Essentially, the capacity of the dispersive channel
can be viewed as the capacity of parallel independent
flat-fading channels, where is the number of independent
coherence subspaces (and the level of delay-Doppler diversity).
Both ergodic and outage capacities can be estimated using
this block-fading model and also facilitate the comparison
between orthogonal and biorthogonal systems from a capacity
perspective. As the channel spread factor increases, the channel
diversity increases thereby improving outage capacity per-
formance, whereas the ergodic capacity deviates from that of
a flat-fading channel due to increased interference between
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basis functions. We quantify this deviation by investigating the
moment behavior of the eigenvalue distribution associated with
doubly dispersive channels using perturbation analysis. Our
result bounds the discrepancy between the moments associated
with doubly dispersive channels and flat-fading channels, and
shows that the discrepancy is proportional to channel spread
factor.

Our analytical and numerical results indicate that the pro-
posed framework for orthogonal STF signaling is effective for
values of as large as and is most advantageous over
conventional methods for channels with relatively large spread
factors – . We note that this range of spread fac-
tors covers all practical wireless communication channels and
is also applicable to various other radio channels. For example,
[12, Table 14-2-1] lists typical values of spread factor for sev-
eral radio channels, whose spread factors are within the appli-
cable range of our framework in most cases. For wireless cel-
lular applications, the CDMA2000 “Vehicular B” channel gives
a spread factor of – at a maximum vehicle spreed of
40 km/h.

The paper is organized as follows. Section II briefly reviews
general orthogonal signaling over doubly dispersive channels
and introduces STF signaling. Section III focuses on perfor-
mance analysis of STF signaling and derivation of the pulse
scale adaptation rule. Section IV discusses the proposed gen-
eral time–frequency signaling framework, including the SIIC
algorithm for interference cancellation and the block-fading in-
terpretation in terms of time–frequency coherence subspaces.
Information-theoretic aspects related to capacity of doubly dis-
persive channels are studied in Section V. Concluding remarks
and pointers for future work are presented in Section VI and
many of the proofs are relegated to the Appendix.

II. SYSTEM MODEL

The (complex) baseband doubly dispersive channel can be
modeled as a random linear operator with kernel [12],
[11], [14]

(1)

where is the channel input and the kernel is called
the delay-Doppler spread function, which is a random process in
both and [11]. The largest delay produced by the channel
is called the multipath spread and the largest Doppler shift is
called the Doppler spread. A wide variety of wireless environ-
ments can be fairly accurately described by the WSSUS model,
under which different delays and Doppler shifts are uncorrelated

(2)

where denotes the complex conjugation and the nonnegative
is called the scattering function of the channel. Projec-

tions of the scattering function along and are called the delay

power profile and Doppler power profile, respectively. Without
loss of generality, we assume channel multipath coefficients

to be zero mean with total unit power, that is,

(3)

The Doppler spread is a measure of time variation in
the channel—the larger the value, the more rapidly the channel
changes in time. Its reciprocal, , is called the coher-
ence time, within which channel remains strongly correlated.
Analogously, channel frequency response within the channel
coherence bandwidth, , is strongly correlated. The
product is called the channel spread factor. If ,
the channel is said to be underspread; otherwise, it is over-
spread. The spread parameters critically control communication
performance over doubly dispersive channels.

Let be a (complex) orthonormal basis in
. Orthogonal signaling modulates transmitted symbols

onto the orthonormal basis by

(4)

Given signaling duration and (two-sided) bandwidth , the
basis functions span a signal subspace with dimension approx-
imately being , where is the least integer not
less than . After matched filter processing at the receiver, the
received symbol can be written as

(5)

or, equivalently, in a matrix form

(6)

where transmit symbol has power and the AWGN has
variance , that is, . The coefficient
of represents the coupling produced by the channel between
the transmit basis function and the receive basis func-
tion

(7)
where

denotes the inner product and

is the induced -norm.
Ideally, choosing to be eigenfunctions of the

channel will render a diagonal channel matrix , in which case
the channel is said to be flat fading, that is, the channel effect
for each basis function reduces to a multiplicative scalar and
there is no interference among basis functions. However, unlike
time-invariant linear channels for which sinusoids are always
eigenfunctions, there are no fixed eigenfunctions for general
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time-varying linear channels. If the transmitter has the knowl-
edge of channel realization, it may choose to dynamically adapt
its transmit basis to channel eigenfunctions. But this procedure
can be very undesirable, if not totally impractical, from the
viewpoint of implementation and system complexity.

Instead, we focus on STF basis for it is matched to the
time–frequency characteristics of doubly dispersive channel:
the channel produces time and frequency shifts of the transmit
signal and the STF basis is generated from a prototype function
via time and frequency shifts. We shall demonstrate that STF
basis functions exhibits good signaling performance, thus
presenting an attractive choice for underspread channels for
which they serve as approximate eigenfunctions.

Definition 1: The STF basis is defined as

(8)

where is the normalized prototype pulse, is
the time separation, and is the frequency separation between
basis functions. The mean of in time and frequency are
defined to be

(9)

where is the Fourier transform of . The variance in time
and frequency are defined correspondingly as

(10)
The product is called the time–frequency spread of
the pulse. Without loss of generality, pulse is assumed to
be centered in time and frequency, that is, and .

Remark 1: The variance in frequency for a rectangular pulse
does not exist due to slow decay of its spectrum. In this case, we
define and .

The STF basis falls within the framework of the so-called
Gabor systems (see, e.g., [15], [6]). The pulse time–frequency
spread is a measure of its time–frequency localization—the
smaller the spread, the better the localization. The Heisenberg’s
uncertainty principle (see, e.g., [15]) states that

(11)

with the equality attained by Gaussian pulses. Since STF basis
functions are generated from the prototype via time–frequency
shifts, they all have the same time–frequency spread parameters.

As we will see later, a simple scaling operation, which shrinks
or dilates the pulse in time and frequency, has a profound ef-
fect on the performance of STF basis over doubly dispersive
channels.

Definition 2: Scaling by parameter is a mapping de-
fined as2

(12)

2Note that the scaling operation preserves pulse energy.

If the original STF basis function has parameters , , ,
and , then after scaling those parameters become , ,

, and , respectively. However, note that the products
(pulse spread) and are unchanged.

The product is critical to the completeness of STF basis
in . For undercritical sampling, , orthonormal
STF bases exist but are not complete. For critical sampling,

, complete orthonormal STF bases exist if the proto-
type satisfies certain conditions [9]. Unfortunately, a com-
plete STF basis has poor time–frequency localization due to the
Balian–Low theorem [8], [9]. For overcritical sampling,

, the basis becomes linearly dependent or redundant. We will
primarily consider critically sampled case since it
yields complete orthonormal systems. However, the relatively
poor time–frequency localization of basis functions in this case
makes interference minimization even more critical.

From communications viewpoint, time–frequency localiza-
tion of basis functions alone does not determine communica-
tion performance. It is the interaction between the basis and the
channel that determines signaling performance over doubly dis-
persive channels. It turns out that the pulse ambiguity function
is key to understanding the interaction between the basis and the
channel [3].

Definition 3: The ambiguity function of the pulse ,
, is defined as

(13)

One can easily verify the following well-known properties.

Proposition 1:

(14)

Moreover, the following holds for orthonormal basis functions:

and
(15)

III. PERFORMANCE ANALYSIS AND INTERFERENCE

MINIMIZATION

In general, interference exists among basis functions in
doubly dispersive channels. We rewrite (6) as

(16)

where the second term represents the interference toward
symbol by other symbols. The interference term in (16)
encompasses two types of interference. One is the intersymbol
interference (ISI), which exists between adjacent time slots

and is caused by channel delay spread, the other is
the intercarrier interference (ICI), which happens between
adjacent frequencies and is induced by channel
Doppler spread. In principle, better time–frequency localization
of the basis offers better immunity against channel dispersion.
Well-localized undercritical Gabor systems have been con-
structed in [3], [5], [6]. Since an undercritical basis
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often incurs a loss in transmission rate, we are primarily
concerned with a complete STF basis . We also
assume that the prototype pulse has been given a priori. (Pulse
prototype design in the context of this work has been studied in
[4], [3], [6].) We are interested in the impact of interference on
system performance and methods of reducing interference for
a given prototype.

A. Signal-to-Interference-and-Noise Ratio

We first calculate the entries of the channel matrix in (6).

Proposition 2:

(17)

(18)

Proof: See Appendix I.

Because of the time–frequency shift structure of the STF
basis and the WSSUS channel assumption, the variance of
channel coefficients is invariant under time–frequency shifts,
which can be seen from (18) to depend on the difference of
time–frequency indices ( and ). Consequently, the
entries on the main diagonal of all have the same variance

(19)
Our next result quantifies the amount of interference associ-

ated with STF signaling over doubly dispersive channels and
relates it to channel and basis parameters. We assume that the
channel coefficients are independent of transmitted information
symbols.

Lemma 1: Define the SINR of receive symbol as

SINR (20)

Then the following holds:

SINR SINR (21)

where is given in (19) and is called the interference
index.

Proof: The completeness of the underlining orthonormal
basis implies that

(22)

and hence,

(23)

It follows from the definition of and power normalization of
(3) that

So we have

Next we show

from which the lemma follows.

Remark 2: The average distortion for a given basis function
is

(24)

One can show that , that is, the interference index
is equal to the average distortion encountered by STF basis func-
tions [16]. Thus, maximizing SINR is equivalent to minimizing
the distortion of basis functions passing through the doubly dis-
persive channel.

B. Interference Minimization

Fig. 1 illustrates the basic notion of pulse scaling in the
time–frequency domain to minimize interference. If the
channel is nonselective in time and frequency ( and

), degenerates to a random scalar and hence any
choice of orthonormal basis will completely avoid interference.
When the channel is time selective only ( and ),
the optimal pulse is peaky in time, which is analogous to
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Fig. 1. A schematic illustrating the optimal pulse scaling.

time-division multiplexing (TDM). When the channel is fre-
quency selective only ( and ), the optimal pulse
is peaky in frequency, which corresponds to frequency-division
multiplexing (FDM). For the general case , the
optimal pulse scale varies between the above two extremes.

When a channel is dispersive in both time and frequency, thus
causing both ISI and ICI, the pulse scale can significantly affect
system performance. A long pulse in time can reduce ISI but
is prone to frequency dispersion due to temporal channel varia-
tions. On the other hand, a short pulse helps reduce ICI but is at
the cost of higher ISI due to relatively large delay spread with
respect to pulse duration. Therefore, one can expect an optimal
pulse scale that minimizes both ICI and ISI jointly. Such a pulse
adaptation, given channel statistics and pulse prototype, can be
cast systematically as the following optimization problem in
light of Lemma 1:

subject to (25)

where is the pulse time–frequency spread, a constant
determined by the given pulse prototype. We note that the pulse
ambiguity function is parameterized by pulse scale.

Most of the pulse energy is concentrated within a time dura-
tion and a frequency band (such as may be measured from
the support of the pulse ambiguity function). So, if is large
compared to the channel delay spread while small compared
to coherence time, it will approximately experience flat fading,
thus resulting in small distortion. Analogous conditions can also
be expressed in the frequency domain as well. In summary, the
following conditions are necessary for small interference:

(26)

Multiplying together both inequalities in (26) and using
, we obtain , which implies that basis design for

low interference is feasible for underspread channels but not for
general overspread channels.

Solving the optimization problem in (25) often involves com-
plicated numerical methods. The above intuitive discussion on
interference minimization suggests an “equal” footing for time
and frequency. We next give a simple scaling rule whose deriva-
tion is relegated to Appendix II. Also shown in Appendix II, the
integral in (25) can be written as a function of where .

Theorem 1 (Optimal Pulse Scale): Assume flat multipath
and Doppler power profiles for the channel. Further assume
that the pulse is separable and symmetric in time and frequency,
that is,

(27)

where is differentiable. Define

(28)

Then, a stationary point of (25) is 3

(29)

which is a local maximum if . A sufficient condition
for local maximum is given by

(30)

The corresponding optimal interference index is given by

(31)

Remark 3: When is sufficiently small, the minimal
interference index in (31) can be approximated by

Since is a decreasing function in the neighborhood of , we
see that smaller results in smaller interference. Moreover,
the minimal interference depends only on the channel spread
factor and the pulse spread factor .

Remark 4: The optimal scaling rule matches the duration and
bandwidth of prototype pulse relatively to the channel delay and
Doppler spread: .

Remark 5: This work assumes no relative time delay be-
tween receiver and transmitter. It turns out one can optimize
such time offset to further improve receiving signal-to-noise
ratio (SNR). As studied in [17], offset yields best perfor-
mance, in which case the above scaling rule shall be modified
accordingly as .

We now apply the above methodology to study the perfor-
mance of Gaussian and rectangular pulses. Due to space limi-

3The same relation has been derived in [4], [3] using different arguments.
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Fig. 2. Interference index of a Gaussian prototype as a function of time scale for different channel spread factors. Flat multipath and Doppler power profiles are
used.

tation, the derivations of our analytical expressions are left out
but can be found in [16].

The Gaussian pulse with variance and is defined as

where the normalization factor is chosen to
normalize pulse energy. Under flat delay and Doppler power
profiles, one has

(32)
where . Here we emphasize that in
general is a function of and , but the optimal value of
depends approximately on the product as in Theorem 1.

In Fig. 2, we evaluate (32) for a Gaussian pulse and plot
the interference index versus the relative scale for dif-
ferent channel spread factors. Note that due to the time–fre-
quency duality and optimal pulse scaling rule, it is the spread
factor rather than the individual or that determines
the optimal performance. The plots, being based on the relative
scale , reflect system performance for arbitrary values of

and such that is fixed. We also plot the
locus, denoted as the approximate optimal line, corresponding
to the approximate scaling rule in Theorem 1. It is evident from
the figure that this line intersects with the interference curves at
their global minimum points. Moreover, the figure illustrates the

effect of the channel spread factor: the smaller the spread factor,
the smaller the interference. The Gaussian pulse exhibits excel-
lent immunity against channel distortion thanks to its excellent
time–frequency localization. For example, for a spread factor
of , the minimal interference is less than , which
gives about 30-dB SINR floor in high-SNR regime. However, as

, STF basis generated by a Gaussian pulse becomes
unstable [18], thereby limiting its practical utility. Nevertheless,
it provides an upper bound on performance.

The rectangular pulse with variance and is
defined as

otherwise.

Under flat-delay and Doppler power profiles

(33)

where . And under the more realistic “bathtub”
Doppler profile

(34)

one has

(35)
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Fig. 3. Interference index for a rectangular pulse as a function of time scale for different channel spread factors. Flat multipath power profile is used. Both
“bathtub” and flat Doppler profiles are used.

We plot the interference index in Fig. 3 by numerically eval-
uating (33) and (35). The interference curves are shown to be
very close for the two Doppler profiles. It is seen from the figure
that the approximate optimal line intersects the two interference
curves near their true minimum points.

Fig. 4 plots the (approximate) minimal interference index
versus the channel spread factor for both rectangular and
Gaussian pulses ( 10 Hz). The scale adaptation rule in
Theorem 1 is used. The figure includes the analytical curves
and the actual simulation data. The simulated channel is gen-
erated by the Jakes model [19], which inherently corresponds
to a “bathtub” Doppler profile. It is seen that the minimum in-
terference index is an increasing function of the spread factor. It
is also evident that the Gaussian pulse outperforms the rectan-
gular pulse. However, the performance gap varnishes as
decreases. The analysis and simulation results for the rectan-
gular pulse show that it undergoes rather significant channel dis-
tortion, even with optimal pulse scale, due to its poor time–fre-
quency localization.

IV. GENERAL SIGNALING FRAMEWORK AND INTERFERENCE

CANCELLATION

We have shown that an appropriate pulse scale can be chosen
to match the channel spread parameters of underspread chan-
nels so as to minimize interference among STF basis functions.
Thus, the channel matrix will have dominant diagonal entries
corresponding to a strong signal energy component. For suffi-
ciently small channel spread factors, interference can be made

so small that is approximately diagonal, in which case the
STF basis functions serve as approximate eigenfunctions. The
choice of an orthogonal STF basis is motivated by the fact that
it is complete and hence preserves bandwidth efficiency. How-
ever, some residual interference remains even after pulse scale
adaptation due to the relatively poor time–frequency localiza-
tion of the STF basis. To mitigate the residual interference, we
propose a low-complexity but highly effective interference can-
cellation technique, SIIC, which will be described later in this
section.

A. General Signaling Framework

Pulse scale adaptation for interference minimization and the
use of SIIC for residual interference removal suggest a gen-
eral orthogonal time–frequency signaling framework for under-
spread channels as depicted in Fig. 5. Pulse design can be incor-
porated into the framework but that is beyond the scope of the
paper. We focus on a single-user context to illustrate the frame-
work. It is a natural extension of conventional OFDM signaling
to doubly dispersive channels. The transmitter modulates the
(coded) symbols onto the STF basis functions for communica-
tion over the channel. At the receiver, a bank of correlators or
matched filters are used to generate the sufficient statistics for
decoding the information symbols. Coherent communication re-
quires channel estimation, which can be tackled in a variety of
ways using our framework (see, e.g., [20]). Here we assume that
perfect estimates of the matrix are available for simplicity.
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Fig. 4. Interference index for Gaussian and rectangular prototypes using the approximately optimal pulse scale. Flat multipath and “bathtub” Doppler profiles
are used for analysis and simulation.

Fig. 5. General time–frequency signaling framework.

One important aspect of the STF signaling scheme is that it
clearly reveals and facilitates the exploitation of channel diver-
sity afforded by the time-varying multipath fading channel. The

auto-term coefficient of the th receive signal is given in
Proposition 2 as

(36)
After pulse scale adaptation, and are much less than
for interference minimization. Under these conditions,
can be approximated by in the integration range, and hence,

(37)

where the time–frequency kernel of the doubly disper-
sive channel is defined as

(38)

It is easy to check that the correlation function of is
related to the channel scattering function as

(39)
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Fig. 6. A schematic illustrating the notion of time–frequency coherence
subspaces.

Consequently, the correlation between different auto-term coef-
ficients can be approximated by

(40)
This demonstrates that the channel memory structure is pre-
served by the STF signaling scheme. When two basis functions
are separated beyond coherence time and/or bandwidth

, they encounter independent fading. On the other hand,
when basis functions lie within a time–frequency region with
support , their channel coefficients are strongly cor-
related. Therefore, we can partition the entire time–frequency
plane by these coherence subspaces as illustrated
in Fig. 6. Since , the number of basis functions in a
coherence subspace is

For a total signal duration and bandwidth , the total level of
diversity afforded by channel equals the number of coherence
subspaces contained within the signal space. More precisely

(41)

where and are, respectively, the
levels of multipath diversity and Doppler diversity [13]. We note
that the is also the number of channel parameters to be esti-
mated and that for underspread channels. Codes can be
designed under the proposed signaling framework to fully uti-
lize channel diversity for reliable communication. For example,
a simple time–frequency diversity scheme using this framework
was proposed in [21].

B. Residual Interference Cancellation

Generally speaking, both ISI and ICI contribute to interfer-
ence in STF signaling. We assume interference can be well
approximated by Gaussian distribution (by the usual central
limit theorem argument provided the number of interfering
basis functions is large). Therefore, the variance of zero-mean
effective noise (interference plus channel noise) is actually

quantified by Lemma 1, where is the received signal
power, is the interference variance, and is the
noise variance. As in Fig. 4, the interference index can be
reduced to be much less than for a wide range of channel
parameters, which results in an SNR loss much less than 1 dB.
However, the presence of a relatively significant interference
can severely limit system performance, for as signal power
increases, that is,

SINR (42)

which is fixed by . For moderate channel spread factors on
the order of (whose interference index is around several
percent), the limiting SINR is roughly 15–20 dB according to
(42).

We consider binary phase-shift keying (BPSK) modulation
with diversity order to demonstrate the effect of interference
on system performance. Diversity signaling of order can be
realized by a simple scheme that repeats the same bit on dif-
ferent basis functions over disjoint coherence subspaces. The
probability of bit error with diversity order is given by
[12]

(43)

where and is the effective SNR of each basis

function. In our case, it is SINR of each basis function due to
the Gaussian assumption for interference.

We first show simulated performance of BPSK modulation
without diversity for different channel spread factors. The trans-
mitter and receiver are as in Fig. 5 except that the residual in-
terference cancellation is not used. 10 Hz is kept fixed
and is changed according to the spread factor . The
STF basis is generated by a rectangular prototype whose scale
is chosen by the scaling rule in Theorem 1. The system has fi-
nite bandwidth such that the number of basis functions in fre-
quency is ; that is, . The channel is simulated via
the Jakes model assuming flat multipath profile and “bathtub”
Doppler profile. Fig. 7 plots both the simulated and analytical
curves for as a function of SNR. The figure clearly shows
the existence of floors due to interference—flattening of
as SNR increases. For , the transition point is be-
tween 15 and 20 dB. Furthermore, it can be seen that the floor
decreases as decreases due to reduced interference.

Next we present in detail our proposed SIIC technique for
residual interference reduction. The SIIC is a decision feedback
type algorithm that jointly removes both ISI and ICI in time–fre-
quency domain. It works sequentially in time. For each time slot,
it first cancels the ISI caused by channel delay spread, then it it-
eratively cancels the ICI among different frequencies within the
same time slot, analogous to the parallel interference cancella-
tion (PIC) algorithms in multiuser detection applications (see,
e.g., [22], [23]). Due to its decision feedback nature, the perfor-
mance of SIIC is critically affected by the quality of the deci-
sions used in interference cancellation.
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Fig. 7. Performance of STF signaling with BPSK modulation for different spread factors. Rectangular prototype, flat multipath, and “bathtub” Doppler profiles.
The pulse scale is determined by approximate pulse scale rule.

In the following, uncoded systems are considered to illustrate
the SIIC algorithm. The algorithm can be readily extended to in-
corporate many coding scheme by modifying its decision gen-
erating component. Stacking all the frequency variables corre-
sponding to the same time index , that is, let

and

the matrix channel (6) can be written as

(44)

where is the multipath spread in symbols. The with
in (44) represents the ISI from previous symbols, while

represents the ICI among different frequencies at the same
time slot . The receiver is assumed to have perfect knowledge
about matrices . For rectangular pulses, after
pulse scale adaptation to minimize interference. Thus,
and hence only adjacent time slots interfere. The residual ICI
signal can be calculated by

(45)

where is a diagonal matrix whose diagonal elements are the
same as those of .

Algorithm 1 (SIIC): The SIIC algorithm with iterations
proceeds as follows.

1) Initiate iteration index . For time slot , perform
ISI cancellation by calculating the ISI using decoded bits
from previous time slots and then subtracting it from

where are previous bit decisions and is the ISI-
removed signal.

2) Decode assuming no interference. This generates the
th bit decisions .

3) Reconstruct the th residual ICI signal by using (45)
and subtracting it from to generate the signal
for the next iteration

4) Iterate Steps 2 and 3 for times.

Remark 6: Many practical slow-fading channels exhibit rel-
atively small Doppler dispersion, so the ICI effect is small for
these systems. The optimal pulse scaling for this scenario co-
incides with OFDM signaling, where a cyclic prefix is used to
combat ISI due to multipath delay. In this case, the SIIC can
be avoided because of the negligible residual interference in the
system. In fact, SIIC is intended for fast-fading channels with
large multipath dispersion.

Remark 7: The exact performance analysis of the SIIC
algorithm seems difficult. But approximation can be done by
tracking each step of the algorithm and approximating the
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Fig. 8. SIIC performance for spread factor 0:01. No diversity signaling is used. The lower bound for the bite-error rate (BER) corresponds to perfect interference
cancellation.

residual interference as Gaussian noise. We refer to [24] for
such an analysis technique.

Fig. 8 shows the performance of SIIC-based reception of the
BPSK modulation with no diversity over a channel with a spread
factor of . The channel simulation setup is the same as in
Fig. 7. We also plot the SIIC performance if perfect decisions
are supplied, which serves as a lower bound for . As evident
from the figure, the SIIC algorithm demonstrates an impres-
sive performance enhancement. A large performance gain can
be achieved by only a small number of iterations. For example,
the performance for (ISI removal and one ICI removal)
is already very close to the lower bound for SNR ranging from
5 to 25 dB. However, the performance gain diminishes as the
number of iteration increases, which is typical behavior of de-
cision feedback techniques.

Shown in Fig. 9 is the SIIC performance for essentially the
same BPSK simulation setup but with two-level of diversity.
Comparing it with Fig. 8, we see that SIIC benefits also from
diversity due to the enhancement in decision feedback quality,
which is critical to overall performance. For instance, two it-
erations of SIIC are sufficient to attain the performance lower
bound as shown in the figure.

V. SYSTEM CAPACITY

In this section, we study doubly dispersive channels and our
proposed signaling framework from an information-theoretic

viewpoint. We focus on the impact of channel parameters, es-
pecially , on system capacity.

A. A Moment Theorem for Doubly Dispersive Channels

We shall work with a discrete description of doubly disper-
sive channels for capacity analysis. In this context, the channel
output and input are related by

(46)

where is the total number of resolvable paths and noise
is white in time. The path coefficient process

is the discrete analog of the continuous process
in (1) with the path index corresponding to and the time index

corresponding to . In view of the WSSUS assumption on
doubly dispersive channels, we may assume that different path
processes are independent zero-mean complex Gaussian and
that sum of total variance is , that is, where
is the variance of the th wide-sense stationary (WSS) process

.
The channel equation in (46) can be concisely rewritten in a

multiple-input multiple-output (MIMO) form as

(47)
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Fig. 9. SIIC performance with diversity signaling of order 2.

where the semi-infinite channel matrix is given by

. . .
. . .

. . .
. . .
. . .

. . .
. . .

(48)
The matrix has only an number of diagonal lines,
each corresponding to a path coefficient process. Unlike time-
invariant linear channels, doubly dispersive channels cause vari-
ations along the diagonals of , whose statistical characteris-
tics are strongly connected to channel Doppler spread , or
equivalently, to channel coherence time . The larger , the
larger the variation. Since the discrete channel essentially comes
from discretizing the underlining (continuous) doubly disper-
sive channel, one can similarly define the notion of channel
coherence length where the signaling band-
width is assumed to be sufficiently large. Therefore, diagonal
entries within a range of remain strongly correlated. Since

, one has

(49)

Hence, the channel spread factor can also be seen as a
measure of relative ratio between the number of diagonal lines
of and the “constant” length of those lines.

When channel state information is available at the receiver
but not at the transmitter, the ergodic channel capacity per di-
mension given power constraint is given by [25], [26]

(50)

where and the subscript means a truncation
of the corresponding infinite-dimensional matrix to dimension

. Denote by the limiting empirical distribution of eigen-
values of random matrix

(51)

where denotes the cardinality of a set . As shown in
[26], the capacity in (50) can also be expressed as

(52)

It is easy to observe that the random matrix also exhibits
a finite banded structure as . The eigenvalue distribution of
such banded random matrices is therefore a key to evaluating
channel capacity. We refer readers to a recent excellent review
on spectral properties of large random matrices [27], where
several types of random matrices have been analyzed. But
the problem for banded random matrices seems elusive and
remains largely unsolved [28]. Although at this stage we are
not able to give the limiting eigenvalue distribution of , we
have characterized its moment behavior.
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Fig. 10. A schematic illustrating matrix products using MBG representation: (a) corresponds to HHHHHH and (b) corresponds to BBB where L = 1 and local
branches relative to the i th row are shown.

The th moment of the empirical distribution
is

(53)

where denotes the trace of a matrix. As

a.s. (54)

where is the th entry in and represents
a typical entry in [26].4 Therefore, the problem boils down
to evaluating entries in higher matrix products.

For this purpose, we will briefly touch upon the usage of ma-
trix bipartite graph (MBG). The MBG for a matrix is defined
to be a bipartite graph consisting of two rows of vertices and
downward arcs between them. Vertices in the top row corre-
spond to row indices of and vertices in the bottom row to
column indices of . The arc connecting the top vertex to
the bottom vertex has value , the th entry in . Let
the MBG associated with matrix be and
the MBG with be . Then, the MBG
corresponding to can be simply represented by cas-
cading and , and the arc connecting to is the sum
of all directed paths from of to of , or symbolically,

. Shown in Fig. 10 are the MBG rep-
resentations of and whose row is represented by
a subgraph fanning out from the common top th vertex. It is
straightforward to observe that the finite bandedness of im-
plies the finite bandedness of , which has number of
diagonals ranging from to . To facilitate exposition, we
introduce a reindexing of matrix entries for banded matrix as

(55)

which denotes the entry at the intersection of the th row and the
th diagonal line of .

Fig. 10 clearly reveals the local nature of computation of en-
tries in . More specifically, the th row of is only affected
by rows of ranging from to , or equivalently,

4i is sufficiently large for fixed k to avoid the edge effects.

by rows of ranging from to ,
denoted by .

Now suppose that the channel coherence length is suffi-
ciently large compared to so that each diagonal
line is almost constant within the row range . One has

(56)
where denotes the correlation operation.
Similarly, the th row of is given by iterated correlation
of , that is, , times. Let

be the (discrete-time) Fourier transform of the se-
quence with respect to the diagonal line index . Since
are independent complex Gaussian with total variance normal-
ized to , it is easy to check that is white in
frequency . Since the Fourier transform of is simply re-
lated to that of by

(57)

one has

(58)
that is, the eigenvalue distribution is exponential. In this case,
the capacity of doubly dispersive channels degenerates to that
of flat fading channels.

However, channel variation always exists for general doubly
dispersive channels where the spread factor is nonzero
but may be small in most practical situations. Suppose that vari-
ance of such variation in the local range is uniformly
upper-bounded by , that is,

(59)

Since , one can choose
.

Theorem 2: Given an integer , suppose the channel
variance within the range is upper-bounded by . Then,
the th moment of limiting eigenvalue distribution satisfies

(60)

where the constant depends on .
Proof: See Appendix III.
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Fig. 11. Eigenvalue distribution of a random channel matrix corresponding to L+ 1 = 4 paths and N = 100000 symbols.

Theorem 2 characterizes the effect of channel spread parame-
ters on capacity. Since the time span in is ,
the channel variation is proportional to the relative ratio of the
time span and the channel coherence time and hence,

(61)

by (49). The smaller the channel spread , the smaller the
and thus the moment difference up to the th order. Higher order
moments tend to exhibit more deviation than lower ones. How-
ever, more and more moments of the eigenvalue distribution of
doubly dispersive channels will agree with those of flat-fading
channels provided that is small enough, which implies
that capacity of doubly dispersive channels converges to that of
flat-fading channels as channel spread decreases.

Fig. 11 plots the empirical eigenvalue distribution of simu-
lated doubly dispersive channels for various spread factors. The
distribution is seen to deviate from the exponential distribution
for large . But the deviation is small as long as channel
remains underspread. Shown in Fig. 12 is the channel capacity
computed from the empirical eigenvalue distribution.As evi-
dent from the figure, capacity of underspread channels is upper-
bounded by that of flat-fading channels and the difference be-
tween them is fairly small for small SNR values.

B. Block Fading in the Time–Frequency Domain

The notion of coherence subspace in our signaling frame-
work leads to a time–frequency block-fading view for doubly

disper-sive channels. As illustrated in Fig. 6, channel coeffi-
cients within the same coherence subspace are assumed to be
the same while they vary in an independent fashion from one
subspace to another. The operational capacity of STF signaling
is affected both by channel dispersion parameters and by the per-
formance of interference cancellation technique such as SIIC in
our framework. Here we treat interference as Gaussian noise to
simplify the analysis.

The channel ergodic capacity per dimension is given by

SINR (62)

where is exponentially distributed with unit mean. The SINR
in the framework depends on many factors such as channel
parameters, pulse characteristics, and the interference cancella-
tion technique used. It is lower bounded by the minimum SINR
without interference cancellation and upper-bounded by the
maximum SINR with perfect interference cancellation, that is,

SINR (63)

If the interference is left untreated, the system capacity will
suffer from a limiting cap analogous to the error floor in the
BER performance. More precisely, as , SINR
and hence .

Fig. 13 plots the ergodic capacity of the STF signaling
framework for a scale-adapted rectangular pulse over a channel
with spread factor . The lower and upper bounds for SINR
were estimated from the simulation data. The capacity of
flat-fading channel is also plotted as a benchmark. As evident
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Fig. 12. Ergodic capacity for different spread factors calculated from the estimated eigenvalue distribution.

from the figure, system capacity levels off in the high-SNR
region when no interference cancellation is used. In contrast,
the SIIC effectively remedies the capacity bottleneck. In the
figure, the mutual information curves for different iterations of
the SIIC are plotted using the estimated residual SINR from
simulation data. More iterations in SIIC narrow the capacity
gap to the upper bound. Furthermore, system capacity benefits
from small channel spread factors, which is demonstrated by
Fig. 14, where system capacity corresponding to a spread factor

is plotted. Fig. 14 suggests that interference cancellation
techniques may be avoided without incurring significant ca-
pacity loss when the channel spread factor is fairly small. For
example, the lower bound in Fig. 14 almost coincides with the
flat-fading capacity up to an SNR of 10 dB.

It is instructive to point out the difference between under-
critical sampling and critical sampling

with respect to system capacity. Undercritcal sampling of-
fers better time–frequency localization than the critical sam-
pling orthogonal basis in our STF framework. But its spectral
efficiency is reduced by a factor of . More specifically,
the system capacity per dimension of an undercritical sampling
basis is given by

SINR (64)

where is the SINR improvement over the critical sampling
basis. Comparing it with the capacity of the critical sampling
basis (62), we want to find out how large needs to be in order
to compensate for the loss in spectral efficiency such that it still

would attain the same capacity as that of (62). Using Jensen’s
inequality, one has

SINR SINR

SINR (65)

which, together with , implies that

SINR

SINR
SINR

as SINR (66)

The above computation illustrates the merit of critical sampling
STF basis: it attains the largest spectral efficiency. The slight
improvement on SINR by using undercritical sampling may not
be warranted from capacity perspective.

Our framework also facilitates the evaluation of the outage
capacity [29]. Given a total signal duration and bandwidth ,
the level of multipath-Doppler diversity is
and the number of basis function in a coherence subspace is

as discussed in Section IV. So, the maximal
mutual information per dimension can be written as

SINR (67)

where is a vector of the fading coefficient for
each coherence subspace. Then, the outage capacity is defined
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Fig. 13. Ergodic capacity of STF signaling for spread factor 0:01. The capacity depends on the residual SINR. Capacity when SIIC is used is calculated from
the estimated residual SINR from the SIIC simulations.

Fig. 14. Ergodic capacity of signaling framework for spread factor 0:001.
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Fig. 15. Outage capacity curves for different levels of diversity at SNR = 10 dB.

to be the maximum rate that can be guaranteed with a certain
outage probability . More precisely

(68)

The outage performance curves for different levels of diversity
are plotted in Fig. 15. Large channel spread factors give rise to
more diversity in the system. Diversity improves outage perfor-
mance although such improvement diminishes at high diversity
level.

VI. CONCLUSION

We have proposed a general framework for orthogonal
signaling over doubly dispersive fading channels via STF basis
functions. Our quantitative results reveal the effect of pulse
time–frequency properties and channel characteristics on sig-
naling performance. A simple scale adaptation rule is derived,
also proposed in [3], [4], to match the pulse characteristics
with the channel. For sufficiently small channel spread factors,
a scale-adapted STF basis serves as a set of approximate
eigenfunctions of the channel and yields a simple block-fading
interpretation of the channel in terms of time–frequency
coherence subspaces. We propose an efficient interference can-
cellation technique to further reduce the residual interference.
System capacity of doubly dispersive channels is studied using
random matrix theory, which reveals the important role of chan-
nel spread factor on capacity. In particular, the capacity devia-
tion of doubly dispersive channels from flat-fading channels is
proportional to channel spread factor.

In relation to the work on undercritically sampled biorthog-
onal systems [3], [5]–[7], the results in this paper
demonstrate the attractiveness of using orthogonal STF bases
for communication over doubly dispersive channels, despite
their poor time–frequency localization properties. This is be-
cause undercritical systems result in a loss in spectral efficiency
that affects overall system capacity linearly, whereas the im-
provement in SINR due to better time–frequency localization
only yields a logarithmic gain in capacity. Furthermore, the
simplicity and impressive performance of the proposed SIIC
scheme suggests that orthogonal systems with interference
cancellation could yield SINR performance comparable to
biorthogonal systems. This is also significant from a practical
perspective since the critically sampled case is much easier to
implement in practice. The same set of basis functions are used
at the transmitter and receiver and incorporating our results in
existing systems requires a simple modification: using existing
prototype pulses with appropriate scale adaptation that only
requires knowledge of channel delay and Doppler spreads. In
biorthogonal systems, two (dual) basis functions are needed
at the transmitter and receiver and the determination of dual
prototypes requires numerical optimization, which is always
approximate and changes with channel statistics [3].

Finally, we note that other recent results on the noncoherent
capacity of time-varying multipath channels suggest signaling
waveforms that are peaky in time or frequency [30], [31] as op-
posed to noise-like spread-spectrum waveforms. The notion of
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time–frequency coherence subspaces introduced in this paper
suggests that partial spreading in time–frequency, commensu-
rate with the dimension of the coherence subspaces, warrants
further investigation in a noncoherent context. Furthermore, the
block-fading interpretation in terms of time–frequency coher-
ence subspaces facilitates the application of coding techniques
for block-fading channels for communication over underspread
doubly dispersive channels [32], [33].

APPENDIX I
PROOF OF PROPOSITION 2

From (7), we have

(69)

For the STF basis, we calculate the inner integral in (69)

Substituting this into (69) yields (17). Next we evaluate
to yield (18):

APPENDIX II
PROOF OF THEOREM 1

It is easy to see from the definition of ambiguity function that
and . Then, (19) becomes

(70)

where and . Since is a
constant, we rewrite (70) as

(71)

Taking the derivative with respect to , we have

(72)
from which is seen to be a stationary point

, thus proving (29). The second derivative at this
point is given by

(73)

where is defined in (28). So, will guarantee to
be a local maximum. Since , one has .
If condition (30) is satisfied, then

(74)

APPENDIX III
PROOF OF THEOREM 2

We bound the perturbation along the computation of entries
in . Let be the (random) difference
between the true value and the desired target . For
convenience, corresponds to . One has

(75)
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where

(76)

Using Jensen’s inequality , one
has

(77)

By the Cauchy–Schwarz inequality ,
the first term in the summation can be bounded by

(78)

because the variance of complex Gaussian random variables
and are bounded by and , respectively. Sim-

ilarly

and

Therefore, the th moment of is bounded by

(79)

where is a constant depending on and is upper-bounded
by .

Before proceeding to compute , we need to bound the
moments of

(80)

where we have used the integral version of the Jensen’s in-
equality to push power inside the integral.

Now we compute as

(81)

where

(82)

Similar as the case of , one has, by using (79) and (80)

(83)

where is a constant depending on .
In general, is given by

(84)

Hence, repeating the above argument to give

(85)

where is a constant depending on and . Since

the theorem is proved by substituting in (85).
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